LIAO Ya-qin, GAN Zhi-hong, LIU Xing-yuan. Highly Efficient Blue Phosphorescent Organic Light Emitting Devices with SrF<sub>2</sub> Doped Hole Transporting Layer[J]. Chinese Journal of Luminescence, 2011,32(8): 803-808
LIAO Ya-qin, GAN Zhi-hong, LIU Xing-yuan. Highly Efficient Blue Phosphorescent Organic Light Emitting Devices with SrF<sub>2</sub> Doped Hole Transporting Layer[J]. Chinese Journal of Luminescence, 2011,32(8): 803-808 DOI: 10.3788/fgxb20113208.0803.
Highly Efficient Blue Phosphorescent Organic Light Emitting Devices with SrF2 Doped Hole Transporting Layer
) was used as the p-type dopant in hole transporting layer (HTL) of blue phosphorescent OLEDs with different doping ratios. The hole injection and transporting of devices have been significantly improved. The 6% doping ratio device showed a high power efficiency (19.1 lm/W)
current efficiency (26.9 cd/A)
and luminance (22 220 cd/m
2
)
which was superior to those for traditional ITO anode reference device with the data of 10.3 lm/W
18.6 cd/A
and 12 320 cd/m
2
respectively.
关键词
Keywords
references
Tang C W, Vanslyke S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51 (12):913-915.[2] Zheng X Y, Zhu W Q, Wu Y Z, et al. A white OLED based on DPVBi blue light emitting host and DCJTB red dopant [J]. Displays, 2003, 24 (3):121-124.[3] Jiang Xueyin, Zhang Zhilin, Cao Jin, et al. White OLED with high stability and low driving voltage based on a novel buffer layer MoOx [J]. J. Phys. D: Appl. Phys., 2007, 40 (18):5553-5557.[4] Gong X, Ostrowski J C, Heeger A J, et al. Red electrophosphorescence from polymer doped with iridium complex [J]. Appl. Phys. Lett., 2002, 81 (20):3711-3713.[5] Kanno H, Ishikawa K, Nishio Y, et al. Highly efficient and stable red phosphorescent organic light-emitting device using bis zinc (Ⅱ) as host material [J]. Appl. Phys. Lett., 2007, 90 (12):123509-1-3.[6] Ikai M, Tokito S, Sakamoto Y. Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer [J]. Appl. Phys. Lett., 2001, 79 (2):156-158.[7] Li Hongyan, Zhang Yuxiang, Zhang Hongke, et al. Effect of a series of host material on optoelectronic performance of red phosphorescent OLED [J]. Chin. J. Lumin. (发光学报), 2009, 30 (5):585-589 (in Chinese).[8] Adachi C, Baldo M A, Forrest S R. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J]. J. Appl. Phys., 2001, 90 (10):5048-5051.[9] Watanabe S, Ide N, Kido J. High-efficiency green phosphorescent organic light-emitting devices with chemically doped layers [J]. Jpn. J. Appl. Phys., 2007, 46 (3A):1186-1188.[10] Adachi C, Kwong R C, Djurovich P, et al. Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials [J]. Appl. Phys. Lett., 2001, 79 (13):2082-2084.[11] Wong Kentsung, Chen Youming, Lin Yuting, et al. Nonconjugated hybrid of carbazole and fluorene: A novel host material for highly efficient green and red phosphorescent OLEDs [J]. Org. Lett., 2005, 7 (24):5361-5364.[12] Zhou Rui, Song Xinchao, Tian Jie, et al. Synthesis and spectroscopic properties of new blue-phosphorescent iridium complexes based on 2-difluorophenyl-4-methylpyridine and 2-(pyridy1-2-yl) imidazole as ligands [J]. Chin. J. Lumin. (发光学报), 2010, 31 (2):279-284 (in Chinese).[13] Ishii H, Sugiyama K, Ito E, et al. Energy level alignment and interfacial electronic structures at organic/ metal and organic/organic interfaces [J]. Adv. Mater., 1999, 11 (12):972-972.[14] Peisert H, Knupfer M, Fink J. Energy level alignment at organic/metal interfaces: Dipole and ionization potential [J]. Appl. Phys. Lett., 2002, 81 (13):2400-2402.[15] Blochwitz J, Pfeiffer M, Fritz T, et al. Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material [J]. Appl. Phys. Lett., 1998, 73 (6):729-731.[16] Ganzorig C, Fujihira M. Improved drive voltages of organic electroluminescent devices with an efficient p-type aromatic diamine hole-injection layer [J]. Appl. Phys. Lett., 2000, 77 (25):4211-4213.[17] Romero D B, Schaer M. Effects of doping in polymer light-emitting-diodes [J]. Appl. Phys. Lett., 1995, 67 (12):1659-1661.[18] Chang C C, Hsieh M T, Chen J F, et al. Highly power efficient organic light-emitting diodes with a p-doping layer [J]. Appl. Phys. Lett., 2006, 89 (25):253504-1-3.[19] Ikeda H, Sakata J, Hayakawa M, et al. Low drive voltage OLEDs with a buffer layer having molybdenum oxide [J]. SID, 2006, 37 (1):923-926.[20] Tu Aiguo, Zhou Xiang. OLEDs with Au/MoO3 hole injuction layer [J]. Chin. J. Lumin. (发光学报), 2010, 31 (2):157-161 (in Chinese).[21] Leem D S, Park H D, Kang J W, et al. Low driving voltage and high stability organic light-emitting diodes with rhenium oxide-doped hole transporting layer [J]. Appl. Phys. Lett., 2007, 91 (1):011113-1-3.[22] Zhao J M, Zhang S T, Wang X J, et al. Dual role of LiF as a hole-injection buffer in organic light-emitting diodes [J]. Appl. Phys. Lett., 2004, 84 (15):2913-2915.[23] Kim J, Kim M, Kim J W, et al. Organic light emitting diodes using NaCl:N,N'-bis(naphthalene-1-yl)-N,N'-bis(phenyl)benzidine composite as a hole injection buffer layer [J]. J. Appl. Phys., 2010, 108 (10):103703-1-3.[24] Martin R L, Kress J D. Molecular and solid-state properties of tris-(8-hydroxyquinolate)-aluminum [J]. Phys. Rev. B, 2000, 61 (23):15804-15811.