浏览全部资源
扫码关注微信
1. 长春理工大学 理学院,吉林 长春,130022
2. 上海电机大学 上海,220245
Received:25 January 2011,
Revised:01 April 2011,
Published Online:22 July 2011,
Published:22 July 2011
移动端阅览
罗添元, 魏志鹏, 李金华, 方芳, 王晓华, 王相虎, 崔勇, 谭学磊. CdS/ZnO纳米复合结构的制备、表征及其 光催化活性的改善[J]. 发光学报, 2011,32(7): 680-685
LUO Tian-yuan, WEI Zhi-peng, LI Jin-hua, FANG Fang, WANG Xiao-hua, WANG Xiang-hu, CUI Yong, TAN Xue-lei. Synthesis and Characterization of CdS/ZnO Nano-composites Structure and Enhanced Photocatalytic[J]. Chinese Journal of Luminescence, 2011,32(7): 680-685
罗添元, 魏志鹏, 李金华, 方芳, 王晓华, 王相虎, 崔勇, 谭学磊. CdS/ZnO纳米复合结构的制备、表征及其 光催化活性的改善[J]. 发光学报, 2011,32(7): 680-685 DOI: 10.3788/fgxb20113207.0680.
LUO Tian-yuan, WEI Zhi-peng, LI Jin-hua, FANG Fang, WANG Xiao-hua, WANG Xiang-hu, CUI Yong, TAN Xue-lei. Synthesis and Characterization of CdS/ZnO Nano-composites Structure and Enhanced Photocatalytic[J]. Chinese Journal of Luminescence, 2011,32(7): 680-685 DOI: 10.3788/fgxb20113207.0680.
利用简单的水热法在ZnO纳米棒表面合成CdS纳米粒子。用扫描电镜(SEM)和X射线衍射(XRD)对CdS/ZnO异质结构进行表征。实验结果表明
在生长CdS的过程中ZnO被逐渐地腐蚀。选择CdS/ZnO纳米复合材料作为光催化剂在紫外光和绿光照射的条件下降解甲基橙(MO)。CdS/ZnO纳米复合材料纳米棒作为光催化剂降解甲基橙的光催化活性有明显的提高。
CdS nanoparticles were synthesized on ZnO nanorods by a sample hydrothermal method. The as-grown ZnO/CdS heterostructures were characterized by scanning electron microscopy (SEM)
X-ray diffraction (XRD). It is shown that ZnO nanonods could be gradually corroded with the growth process of CdS. We selected ZnO-CdS nano-composites as a configuration to decompose methyl orange (MO) under ultraviolet and green light irradiation. Compared with ZnO nanorods
the absorption spectrum of CdS/ZnO nano-composites could be extended from ultraviolet to visible light
then compared with ZnO nanorods the photocatalytic activity of the nano-composites was obvious enhanced.
Sun Tianjun, Qiu Jiehan, Liang Changhai. Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays [J]. J. Phys. Chem. C, 2008, 112 (3):715-721.[2] Park W I, Kim J S, Yi G C, et al. ZnO nanorod logic circuits [J]. Adv. Mater., 2005, 17 (32):1393-1397.[3] Kuo T J, Lin C N, Kuo C L, et al. Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts [J]. Chem. Mater., 2007, 19 (21):5143-5147.[4] Georgekutty R, Seery M K, Pillai S C. A highly efficient Ag-ZnO photocatalyst: pynthesis, properties, and mechanism [J]. J. Phys. Chem. C, 2008, 112 (35):13563-13570.[5] Fang Guojia, Wang Mingjun, Liu Nishuang, et al. Vertically aligned and patterned growth, photolum inescence and field electron emission properties of ZnO nanowires [J]. Chin. J. Lumin.(发光学报), 2008, 29 (3):422-424 (in Chinese).[6] Li Dongming, Li Jinhua, Fang Xuan, et al. Growth mechanism structural and optical properties of hexagonal cone-shaped ZnO nanostructure [J]. Chin. J. Lumin.(发光学报), 2010, 31 (1):114-118 (in Chinese).[7] Tak Y J, Hong S J, Lee J S, et al. Solution-based synthesis of a CdS nanoparticle/ZnO nanowire heterostructure array [J]. Crystal Growth & Design, 2009, 9 (6):2627-2632.[8] Bao N, Shen L, Takata T, et al. Facile Cd-thiourea complex thermolysis synthesis of phase-controlled CdS nanocrystals for photocatalytic hydrogen production under visible light [J]. J. Phys. Chem., 2007, 111 (47):17527-17534.[9] Chang C H, Lee Y L. Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells [J]. Appl. Phys. Lett., 2007, 91 (5):053503-1-3.[10] Chen S, Paulose M, Ruan C, et al. Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: Preparation, characterization, and application to photoelectrochemical cells [J]. J. Photochem. Photobiol. A, 2005, 177 (2-3):177-184.[11] Xiao Mingwei, Wang Lishi, Wu Yadan, et al. Preparation and characterization of CdS nanoparticles decorated into titanate nanotubes and their photocatalytic properties [J]. Nanotechnology, 2008, 19 (1):015706-1-7.[12] Jia Huimin, Xu Hua, Hu Yan, et al. TiO2@CdS core-shell nanorods films: fabrication and dramatically enhanced photoelectrochemical properties [J]. Electrochem. Commun., 2007, 9 (3):354-360.[13] Liu B, Lee J Y. Ordered alignment of CdS nanocrystals on MWCNTs without surface modification [J]. J. Phys. Chem. B, 2005, 109 (50):23783-23786.[14] Yin Yuxin, Jin Zhengguo, Hou Feng. Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays [J]. Nanotechnology, 2007, 18 (49):495608-1-6.[15] Chi C F, Lee Y L, Weng H S. A CdS-modified TiO2 nanocrystalline photoanode for efficient hydrogen generation by visible light [J]. Nanotechnology, 2008, 19 (12):125704-1-5.[16] Shvalagin V V, Stroyuk A L, Kotenko I E, et al. Photocatalytic formation of porous CdS/ZnO nanospheres and CdS nanotubes [J]. Theor. Exp. Chem., 2007, 43 (4):229-234.[17] Jing Dongwei, Guo Liejin. A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure [J]. J. Phys. Chem. B, 2006, 110 (23):11139-11145.[18] Shangguan W F, Yashida A. Synthesis and photocatalytic properties of CdS-intercalated metal oxides [J]. Sol. Energy Mater. Sol. Cells., 2001, 69 (2):189-194.[19] Tawkaew S, Fujishiro Y, Yin S, et al. Synthesis of cadmium sulfide pillared layered compounds and photocatalytic reduction of nitrate under visible light irradiation [J]. Colloid Surf. A, 2001, 179 (2):139-144.[20] Ruckh M, Schmid D, Schock H W. Photoemission studies of the ZnO/CdS interface [J]. J. Appl. Phys., 1994, 76 (10):5945-5948.[21] Chen Songzhe, Zhang Pengyi, Zhu Wanpeng, et al. Progress in visible light responding photocatalysts [J]. Progress in Chemistry (化学进展), 2004, 16 (4):613-619 (in Chinese).[22] Cheng Ping, Gu Mingyuan, Jin Yanping. Recent progress in titania photocatalyst operating under visible light [J]. Progress in Chemistry (化学进展), 2005, 17 (1):8-14 (in Chinese)[23] Vogel R, Pohl K, Weller H. Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS [J]. Chem. Phys. Lett., 1990, 174 (3):241-246.[24] Ke Dingning, Liu Shilin, Dai Ke. CdS/regenerated cellulose nanocomposite films for highly efficient photocatalytic H2 production under visible light irradiation [J]. J. Phys. Chem., 2009, 113 (36):16021-16026.[25] Vogel R, Hoyer P, Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors [J]. J. Phys. Chem., 1994, 98 (12):3183-3188.[26] Peter L M, Wijayantha K G U, Riley D J. Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2 [J]. J. Phys. Chem. B, 2003, 107 (33):8378-8381.[27] Zaban A, Micic O I, Gregg B A. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots [J]. Langmuir, 1998, 14 (12):3153-3156.[28] De Lacy Costello B P J, Ewen R J, Ratcliffe N M. Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles [J]. Sens. Actuators B, 2008, 134 (2):945-952.[29] Sasha G, Gary H. Quantum size effects in the study of chemical solution deposition mechanisms of semiconductor films [J]. J. Phys. Chem., 1994, 98 (20):5338-5346.[30] Tak Y, Kim H Y, Lee D W, et al. Type- Ⅱ CdS nanoparticle-ZnO nanowire heterostructure arrays fabricated by a solution process: enhanced photocatalytic activity [J]. Chem. Commun., 2008, 71 (38 ):4585-4587.[31] Kongkanand A, Tvrdy K, Takechi K, et al. Quantum dot solar cells tuning photoresponse through size and shape control of CdSe-TiO2 architecture [J]. J. Am. Chem. Soc., 2008, 130 (12):4007-4015.[32] Wu Ling, Yu J C, Fu Xianzhi. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation [J]. J. Mol. Catal. A: Chem., 2006, 244 (1-2):25-32.[33] Spoerke E D, Lloyd M T, Lee Y, et al. Nanocrystal layer deposition: surface-mediated templating of cadmium sulfide nanocrystals on zinc oxide architectures [J]. J. Phys. Chem. C, 2009, 113 (37):16329-16336.[34] Du Ning, Zhang Hui, Chen Bingdi, et al. Low-temperature chemical solution route for ZnO based sulfide coaxial nanocables: general synthesis and gas sensor application [J]. Nanotechnology, 2007, 18 (11):115619-1-6.[35] Gao Tao, Li Qiuhong, Wang Taihong. Sonochemical synthesis, optical properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites [J]. Chem. Mater., 2005, 17 (4):887-892.[36] Ayyub P, Vasa P, Taneja P, et al. Photoluminescence enhancement in nanocomposite thin films of CdS-ZnO [J]. J. Appl. Phys., 2005, 97 (10):104310-1-4.[37] Vanheusden K, Warren W L, Sesger C H, et al. Mechanisms behind green photoluminescence in ZnO phosphor powders [J]. J. Appl. Phys., 1996, 79 (10):7983-7990.[38] Yao B D, Chan Y F, Wang N. Formation of ZnO nanostructures by a simple way of thermal evaporation [J]. Appl. Phys. Lett., 2002, 81 (4):757-759.[39] Fang F, Zhao D X, Li B H, et al. The enhancement of ZnO nanowalls photoconductivity induced by CdS nanoparticle modification [J]. Appl. Phys. Lett., 2008, 93 (23):233115-1-3.[40] Wang Xuewen, Liu Gang, Chen Zhigang, et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/Cds heterostructures [J]. Chem. Commun., 2009, 66 (23):3452-3454.
0
Views
158
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution