HUANG Zheng-yu, DAI Shi-xun, LIN Chang-gui, WANG Xun-si, SHEN Xiang, XU Tie-feng, NIE Qiu-hua. Luminescence and Mechanism of Energy Transfer of Er<sup>3+</sup> /Tm<sup>3+</sup>-codoped Ga<sub>5</sub>Ge<sub>20</sub>Sb<sub>10</sub>S<sub>65</sub> Glass[J]. Chinese Journal of Luminescence, 2011,32(6): 565-570
HUANG Zheng-yu, DAI Shi-xun, LIN Chang-gui, WANG Xun-si, SHEN Xiang, XU Tie-feng, NIE Qiu-hua. Luminescence and Mechanism of Energy Transfer of Er<sup>3+</sup> /Tm<sup>3+</sup>-codoped Ga<sub>5</sub>Ge<sub>20</sub>Sb<sub>10</sub>S<sub>65</sub> Glass[J]. Chinese Journal of Luminescence, 2011,32(6): 565-570 DOI: 10.3788/fgxb20113206.0565.
Luminescence and Mechanism of Energy Transfer of Er3+ /Tm3+-codoped Ga5Ge20Sb10S65 Glass
glasses were prepared by traditional melt-quenching method. Fluorescence spectra were investigated under 980 nm and 800 nm LD excitation. Combined with their absorption spectra
the Judd-Ofelt intensity parameters
i
(i
=2
4
6)
spontaneous transition probabilities
A
and rediative lifetomes
for Er
3+
ion were calculated by Judd-Ofelt theory. Due to the energy transfer from
4
I
13/2
of Er
3+
to
3
F
4
of Tm
3+
the addition of Tm
3+
significantly reduced the lifetime of the
4
I
13/2
level of Er
3+
that in turn increase the possibility of population inversion between the
4
I
11/2
and
4
I
13/2
levels of Er
3+
. It is learned that the intensity of 2.76 m mid-infrared fluorescence firstly increased
and then dropped in the Er
3+
/Tm
3+
-doped Ga
5
Ge
20
Sb
10
S
65
glasses with the increase of Tm
3+
ion concentration.
关键词
Keywords
references
West Y D, Schweizer T, Brady D J, et al. Gallium lanthanum sulphide fibers for infrared transmission [J]. Fiber and Integrated Optics, 2000, 19 (3):229-250.[2] Takebe H, Kitagawa R, Hewak D W. Non-toxic sulfide glasses and thin films for optical applications [J]. Nippon Sera-mikkusu Kyokai, 2005, 113 (1):37-43.[3] Lezal D, Pedlikova J, Zavadil J, et al.Preparation and characterization of sulfide, selenide and telluride glasses [J]. J. Non-Cryst. Solids, 2003, 326-327 :47-52.[4] Reisfeld R, Bornstein A, Flahaut J, et al. Absorption and fluorescence of Ho3+ in La2S33Ga2S3 [J].Chem. Phys. Lett., 1977, 47 (1):408-410.[5] Sanghera J S, Shaw L B, Busse L E, et al. Development and infrared applications of chalcogenide glass optical fibers [J]. Fiber and Integrated Optics, 2000, 19 (3):251-274.[6] Zhang Pengjun, Dai Shixun, Wang Yanling, et al. Luminescence and mechanism of energy transfer of Er3+/Tm3+-codoped tellurite glass [J]. Chin. J. Lumin. (发光学报), 2009, 30 (6):744-749 (in Chinese).[7] Lei Yu, Tian Yu, Gao Dangli, et al. Luminescence property of single doped and co-doped fluoride nanocrystals [J]. Chin. J. Lumin. (发光学报), 2010, 31 (4):549-555 (in Chinese).[8] Nishii J, Morimoto S, Inagawa I, et al. Recent advances and trends in chalcogenide glass fiber technology: a review [J]. J. Non-Cryst. Solids, 1992, 140 :199-208.[9] Judd B R. Optical absorption intensities of rare-earth ions [J]. J. Phys. Rev., 1962, 127 (3):750-761.[10] Ofelt S. Intensities of crystal spectra of rare-earth ions [J]. J. Chem. Phys., 1962, 37 (3):511-520.[11] Zou Xuelu, Izumitani T. Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses [J]. J. Non-Cryst. Solids, 1993, 162 (1-2):68-80.[12] Weber M J. Multiphonon relaxation of rare-earth ions in yttrium orthoaluminate [J]. Phys. Rev., 1973, 8 (1):54-64.[13] McCumber D E. Theory of phonon-terminated optical masers [J]. Phys. Rev. A, 1964, 134 (2):299-306.[14] Dexter D L. A theory of sensitized luminescence in solids [J]. J. Chem. Phys., 1953, 21 (5):836-850.[15] Peng B, Izumitani T. Optical properties, Flourescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+ [J]. Opt. Mater., 1995, 4 (6):797-810.