浏览全部资源
扫码关注微信
中国科学院长春应用化学研究所 稀土资源利用国家重点实验室,吉林 长春,130022
Received:25 April 2011,
Revised:24 May 2011,
Published Online:22 June 2011,
Published:22 June 2011
移动端阅览
林君, 李春霞. 稀土氟化物纳/微米材料的水热合成、形成机理和发光性质[J]. 发光学报, 2011,32(6): 519-534
LIN Jun, LI Chun-xia. Hydrothermal Synthesis, Formation Mechanisms and Luminescence Properties of The Rare Earth Fluorides Nano- and Micro-materials[J]. Chinese Journal of Luminescence, 2011,32(6): 519-534
林君, 李春霞. 稀土氟化物纳/微米材料的水热合成、形成机理和发光性质[J]. 发光学报, 2011,32(6): 519-534 DOI: 10.3788/fgxb20113206.0519.
LIN Jun, LI Chun-xia. Hydrothermal Synthesis, Formation Mechanisms and Luminescence Properties of The Rare Earth Fluorides Nano- and Micro-materials[J]. Chinese Journal of Luminescence, 2011,32(6): 519-534 DOI: 10.3788/fgxb20113206.0519.
研究了稀土氟化物纳/微米材料的设计合成、形貌控制、形成机制以及发光性质。发展了一种简单、整体、没有模板、环境友好的水热方法合成系列稀土氟化物
即用有机添加剂柠檬酸钠(Na
3
C
6
H
5
O
7
2H
2
O)作为配位剂和形貌控制剂
通过改变氟源(NaF
NH
4
F或NaBF
4
)和最初溶液的pH值
得到了具有不同成分、晶体结构、尺寸和形貌的稀土氟化物
包括
RE
F
3
(
RE
=La~Lu
Y)以及六方相和立方相的Na
RE
F
4
(
RE
=Y
Yb
Lu);最重要的是首次研究了具有各种晶体结构和形貌的镱、镥氟化物的可控合成。对各种产物可能的形成机理进行了合理、系统的讨论
并对各种基质中Eu
3+
Tb
3+
掺杂的下转换和Yb
3+
/Er
3+
Yb
3+
/Tm
3+
共掺杂的上转换发光性质进行了详细的研究。
The rare earth fluorides nano- and micro-materials as well as controlled morphologies
formation mechanisms and luminescence properties are studied in this paper. A facile
general
template-free and environmentally friendly hydrothermal methodology has been developed to prepare the whole rare earth fluorides nano- and microcrystals. Organic additive trisodium citrate plays double roles of coordination ligand and shape modifier in determining the morphologies of the final products. Through the precise tuning several critical parameters including F
-
sources (NaF
NH
4
F
NaBF
4
)
pH value in the initial solution and the choice of organic additives
the whole rare earth fluorides with various compositions
crystal structures
uniform sizes and morphologies have been obtained easily
including
RE
F
3
(
RE
=La~Lu) as well as cubic and hexagonal phase Na
RE
F
4
(
RE
=Y
Yb
Lu). More importantly
for the first time
the controllable synthesis of ytterbium (or lutetium) fluoride compounds with diverse crystal phase and morphologies have been reported. The possible formation mechanisms for products with various architectures have been presented systematically. The photoluminescence properties of Eu
3+
Tb
3+
-doped DC and Yb
3+
/Er
3+
Yb
3+
/Tm
3+
-codoped UC Na
RE
F
4
or
RE
F
3
have also been investigated in detail.
EI-Sayed M A. Some interesting properties of metals confined in time and nanometer space of different shapes [J]. Acc. Chem. Res., 2001, 34 (4):257-264.[2] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science, 1996, 271 (5251):933-937.[3] Zhou H, Mao Y, Wong S S. Probing structure-parameter correlations in the molten salt synthesis of BaZrO3 perovskite submicrometer-sized particles [J]. Chem. Mater., 2007, 19 (22):5238-5249.[4] Mao Y B, Park T J, Zhang F, et al. Environmentally friendly methodologies of nanostructure synthesis [J]. Small, 2007, 3 (7):1122-1139.[5] Wang L Y, Li Y D. Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials [J]. Nano Lett., 2006, 6 (8):1645-1649.[6] Song R Q, Xu A W, Yu S H. Layered copper metagermanate nanobelts:hydrothermal synthesis, structure, and magnetic properties [J]. J. Am. Chem. Soc., 2007, 129 (14):4152-4153.[7] Hu J Q, Chen Q, Xie Z X, et al. A simple and effective route for the synthesis of crystalline silver nanorods and nanowires [J]. Adv. Funct. Mater., 2004, 14 (1):183-189.[8] Ji X H, Song X N, Li J, et al. Size control of gold nanocrystals in citrate reduction:The third role of citrate [J]. J. Am. Chem. Soc., 2007, 129 (45):13939-13948.[9] Tian Z R, Voigt J A, Liu J, et al. Complex and oriented ZnO nanostructures [J]. Nat. Mater., 2003, 2 (12):821-826.[10] Liang J B, Liu J W, Xie Q, et al. Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles [J]. J. Phys. Chem. B, 2005, 109 (19):9463-9467.[11] Diamente P R, Raudsepp M, Van Veggel F C J M. Dispersible Tm3+-doped nanoparticles that exhibit strong 1.47 m photoluminescence [J]. Adv. Funct. Mater., 2007, 17 (3):363-368.[12] Boyer J C, Cuccia L A, Capobianco J A. Synthesis of colloidal upconverting NaYF4 ∶ Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals [J]. Nano Lett., 2007, 7 (3):847-852.[13] Yi G S, Chow G M. Synthesis of Hexagonal-phase NaYF4 ∶ Yb,Er and NaYF4 ∶ Yb,Tm nanocrystals with efficient up-conversion fluorescence [J]. Adv. Funct. Mater., 2006, 16 (18):2324-2329.[14] Mai H X, Zhang Y W, Si R. et al. High-quality sodium rare-earth fluoride nanocrystals:Controlled synthsis and optical properties [J]. J. Am. Chem. Soc., 2006, 128 (19):6426-6436.[15] Wang X, Zhuang J, Peng Q. et al. A general strategy for nanocrystal synthesis [J]. Nature, 2005, 437 (1):121-124.[16] Wang Z L, Quan Z W, Jia P Y, et al. A facile synthesis and photoluminescent properties of redispersible CeF3, CeF3 ∶ Tb3+, and CeF3 ∶ Tb3+/LaF3 (core/shell) nanoparticles [J]. Chem. Mater., 2006, 18 (8):2030-2037.[17] Zhu L, Liu X, Meng J. et al. Facile sonochemical synthesis of single-crystalline europium fluorine with novel nanostructure [J]. Cryst. Growth Des., 2007, 7 (12):2505-2511.[18] Jacob D S, Bitton L, Grinblat J. et al. Are ionic liquids really a boon for the synthesis of inorganic materials? a general method for the fabrication of nanosized metal fluorides [J]. Chem. Mater., 2006, 18 (13):3162-3168.[19] Li C X, Yang J, Yang P P, et al. Hydrothermal synthesis of lanthanide fluorides LnF3(Ln=La to Lu) nano-/microcrystals with multiform structures and morphologies [J]. Chem. Mater., 2008, 20 (13):4317-4326.[20] Li C X, Yang J, Quan Z W, et al. Different microstructures of -NaYF4 fabricated by hydrothermal process:Effects of pH values and fluoride sources[J]. Chem. Mater., 2007, 19 (20):4933-4942.[21] Li C X, Quan Z W, Yang J, et al. Highly uniform and monodisperse -NaYF4 ∶ Ln3+ (Ln=Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals:Hydrothermal synthesis and luminescent properties [J]. Inorg. Chem., 2007, 46 (16):6329-6337.[22] Li C X, Quan Z W, Yang P P, et al. Controllable synthesis and shape evolutions of NaYbF4 and YbF3 microstructures [J]. J. Mater. Chem., 2008, 18 (12):1353-1361.[23] Li C X, Liu X M, Yang P P, et al. LaF3, CeF3, CeF3 ∶ Tb3+, and CeF3 ∶ Tb3+@LaF3 (core-shell) nanoplates:Hydrothermal synthesis and luminescence properties [J]. J. Phys. Chem. C, 2008, 112 (35):2904-2910.[24] Li C X, Quan Z W, Yang P P, et al. Shape controllable synthesis and upconversion properties of lutetium fluoride microcrystals by hydrothermal process [J]. J. Phys. Chem. C, 2008, 112 (35):13395-13404.[25] Li C X, Yang J, Yang P P. et al. Two-dimensional -NaLuF4 hexagonal microplates [J]. Cryst. Growth Des., 2008, 8 (3):923-929.[26] Li C X, Zhang C M, Hou Z Y. et al. -NaYF4 and -NaYF4 ∶ Eu3+ microstructures:Morphology control and tunable luminescence properties [J]. J. Phys. Chem. C, 2009, 113 (6):2332-2339.[27] Li C X, Lin J. Rare earth fluoride nano-/microcrystals:Synthesis, surface modification and application [J]. J. Mater. Chem., 2010, 20 :6831-6847.[28] Wu Y, Li C X, Yang D M, et al. Rare earth fluoride NaGdF4 with multiform morphologies:Hydrothermal synthesis and luminescent properties [J]. J. Colloid Interface Sci., 2011, 354 (2):429-438.[29] Zhang M F, Fan H, Xi B J, et al. Synthesis, characterization, and luminescence properties of uniform Ln3+-doped YF3 nanospindles [J]. J. Phys. Chem. C, 2007, 111 (1):6652-6657.[30] Filankembo A, Pileni M P. Is the template of self-colloidal assemblies the only factor that controls nanocrystal shapes? [J]. J. Phys. Chem. B, 2000, 104 (18):5865-5868.[31] Laudise R A, Kolb E D, Caporaso A J. Hydrothermal growth of large sound crystals of zinc oxide [J]. J. Am. Ceram. Soc., 1964, 47 (1):9-12.[32] Mann S. The chemistry of form [J]. Angew. Chem. Int. Ed., 2000, 39 (19):3392-3406.[33] Jang E S, Won J H, Hwang S J. et al. Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity [J]. Adv. Mater., 2006, 18 (24):3309-3312.[34] Jun Y W , Lee J H, Choi J S, et al. Symmetry-controlled colloidal nanocrystals:Nonhydrolytic chemical synthesis and shape determining parameters [J]. J. Phys. Chem. B, 2005, 109 (21):14795-14806.[35] Zhang F, Wan Y, Yu T, et al. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence [J]. Angew. Chem. Int. Ed., 2007, 46 (42):7976-7979.[36] Privman V, Goia D V, Park J, et al. Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors [J]. J. Colloid Interface Sci., 1999, 213 (1):36-45.[37] Zhao Q R, Xie Y, Zhang Z G, et al. Size-selective synthesis of zinc sulfide hierarchical structures and their photocatalytic activity [J]. Cryst. Growth Des., 2007, 7 (1):153-158.[38] Kim F, Connor S, Song H, et al. Platonic gold nanocrystals [J]. Angew. Chem., Int. Ed., 2004, 43 (28):3674-3677.[39] Zhou H J, Mao Y B, Wong S S. Shape control and spectroscopy of crystalline BaZrO3 perovskite particles [J]. J. Mater. Chem., 2007, 17 (17):1707-1713.[40] Zakaria D, Mahiou R, Avignant D, et al. Single-structure refinement and luminescence analysis of a beta-NaYF4 [J]. J. Alloy Comp., 1997, 257 (1):65-68.[41] Quan Z W, Yang D M, Li C X, et al. Multicolor tuning of manganese-doped ZnS colloidal nanocrystals [J]. Langmuir, 2009, 25 (17):10259-10262.[42] Y G Su, Li L P, Li G S. Self-assembly and multicolor emission of core-shell structured CaWO4 ∶ Na+/Ln3+ spheres [J]. Chem. Commun., 2008(34):4004-4006.[43] Li L, Tao J H, Pan H H, et al. Colour tuning of core-shell fluorescent materials [J]. J. Mater. Chem., 2008, 18 (44):5363-5365.[44] Wang F, Liu X G. Upconversion multicolor fine-tuning:Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles [J]. J. Am. Chem. Soc., 2008, 130 (17):5642-5463.[45] Wang F, Xue X J, Liu X G. Multicolor tuning of (Ln, P)-doped YVO4 nanoparticles by single-wavelength excitation [J]. Angew. Chem., Int. Ed., 2008, 47 (5):906-909.[46] Wang F, Fan X P, Wang M Q, et al. Multicolour PEI/NaGdF4 ∶ Ce3+, Ln3+ nanocrystals by single-wavelength excitation [J]. Nanotechnology, 2007, 18 (2):025701-1-5.[47] Liu X M, Li C X, Quan Z W, et al. Tunable luminescence properties of CaIn2O4 ∶ Eu3+ phosphors [J]. J. Phys. Chem. C, 2007, 111 (44):16601-16607.[48] Riwotzki K, Meyssamy H, Schnablegger H, et al. Liquid-phase synthesis of colloids and redispersible powders of strongly luminescing LaPO4 ∶ Ce,Tb nanocrystals [J]. Angew. Chem., Int. Ed., 2001, 40 (3):573-576.[49] Sudarsan V, Sivakumar S, Van Veggel F C J M. General and convenient method for making highly luminescent sol-gel derived silica and alumina films by using LaF3 nanoparticles doped with lanthanide ions (Er3+, Nd3+, and Ho3+) [J]. Chem. Mater., 2005, 17 (18):4733-4742.[50] Kmpe K, Lehmann O, Haase M. Spectroscopic distinction of surface and volume ions in cerium (Ⅲ)- and terbium (Ⅲ)-containing core and core-shell nanoparticles [J]. Chem. Mater., 2006, 18 (18):4442-4446.
0
Views
221
下载量
6
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution