LIU Gui-xia, LI Ruo-lan, DONG Xiang-ting, WANG Jin-xian. Preparation and Characterization of LaPO<sub>4</sub> ∶ Eu<sup>3+</sup>@SiO<sub>2</sub> Core-shell Luminescent Naonrods[J]. Chinese Journal of Luminescence, 2011,32(5): 466-470
LIU Gui-xia, LI Ruo-lan, DONG Xiang-ting, WANG Jin-xian. Preparation and Characterization of LaPO<sub>4</sub> ∶ Eu<sup>3+</sup>@SiO<sub>2</sub> Core-shell Luminescent Naonrods[J]. Chinese Journal of Luminescence, 2011,32(5): 466-470 DOI: 10.3788/fgxb20113205.0466.
Preparation and Characterization of LaPO4 ∶ Eu3+@SiO2 Core-shell Luminescent Naonrods
luminescence nanorods were prepared via a hydrothermal method without any surfactants
then an uniform SiO
2
layer was coated on the surface of LaPO
4
∶ Eu
3+
nanorods by sol-gel method. At lasts LaPO
4
∶ Eu
3+
@SiO
2
core-shell structural luminescence nanorods were achieved. XRD patterns show that the uncoated and coated samples are all monclinic LaPO
4
crystals. FTIR spectra indicate that LaPO
4
∶ Eu
3+
is linked with SiO
2
by chemical bond. TEM images reveal that the LaPO
4
∶ Eu
3+
samples are one-dimensional nanorods with a diameter of 20 nm and a length of 300~500 nm. The coating thickness of SiO
2
can be controlled by the concentration of TEOS. The results of photoluminescence properties show that the main emission peak of LaPO
4
∶ Eu
3+
nanorods is near 591 nm
which is the characteristic orange red light corresponding to
5
D
0
7
F
1
transition of Eu
3+
under 259 nm excitation. The PL intensity of the samples become weak with the increasing of the coating thickness
but the shape and the position of the peaks are not changed.
关键词
Keywords
references
Blasse G, Grabmeter B C. Luminescent Materials [M]. Berlin: Springer-Verlag, 1994:40-45.[2] Riwotzki K, Haase M. Wet-chemical synthesis of doped colloidal nanoparticles: YVO4 ∶ Ln (Ln=Eu, Sm, Dy) [J]. J. Phys. Chem. B, 1998, 102 (50):10129-10135.[3] Riwotzki K, Haase M. Colloidal YVO4 ∶ Eu and YP0.95V0.05O4 ∶ Eu nanoparticles: Luminescence and energy transfer proce-sses [J]. J. Phys. Chem. B, 2001, 105 (51):12709-12713.[4] Zhang X, Liao J Y, Yin Z W, et al. Improving radiation stability of yttrium ions doped PbWO4 crystals by stoichiometric tuning [J]. Chem. Phys. Lett., 2004, 383 (3-4):245-250.[5] Sohn K S, Zeon W, Chang H, et al. Combinatorial search for new red phosphors of high efficiency at VUV excitation based on the YRO4(R=As,Nb,P,V) system [J]. Chem. Mater., 2002, 14 (5):2140-2148.[6] Rambabu U, Amalnerkar D P, Kale B B, et al. Optical properties of LnPO4 ∶ Tb3+(Ln=Y,La and Gd) powder phosphors [J]. Mater. Chem. Phys., 2001, 70 (1):1-6.[7] Yu L X, Li D C, Yue M X, et al. Dependence of morphology and photoluminescent properties of GdPO4 ∶ Eu3+ nanostructures on synthesis condition [J]. Chem. Phys., 2006, 326 (2-3):478-482.[8] Yan B, Su X Q, Zhou K. In situ chemical coprecipatation composition of hybrid precursors to red YVO4 ∶ Eu3+ and green LaPO4 ∶ Tb3+ phosphors [J]. Materials Research Bulletin, 2006, 41 (1):134-143.[9] Di W H, Wang X J, Chen B J. Preparation, characterization and VUV luminescence property of YPO4 ∶ Tb phosphor for a PDP [J]. Optical Materials, 2005, 27 (8):1386-1390.[10] Yang M, You H P, Zheng Y H, et al. Hydrothermal synthesis and luminescent properties of novel ordered sphere CePO4 hierarchical architectures [J]. Inorg. Chem., 2009, 48 (24):11559-11565.[11] Zhang L H, Jia G, You H P, et al. Sacrificial template method for fabrication of submicrometer-size YPO4 ∶ Eu3+ hierarchical hollow spheres[J]. Inorg. Chem., 2010, 49 (7):3305-3309.[12] Bloemer M J, Haus J W. Versatile waveguide polarizer incorporating an ultrathin discontinuous silver film [J]. Appl. Phys. Lett., 1992, 61 (1):1619-1621.[13] Boxberg F, Sndergaard N, Xu H Q. Photovoltaics with piezoelectric core-shell nanowires [J]. Nano Lett., 2010, 10 (4):1108-1112.[14] Chi F L, Guo Y N, Liu J, et al. Size-tunable and functional core-shell structured silica nanoparticles for drug release [J]. J. Phys. Chem. C, 2010, 114 (6):2519-2523.[15] Chiu W, Khiew P, Cloke M, et al. Heterogeneous seeded growth: Synthesis and characterization of bifunctional Fe3O4/ZnO core/shell nanocrystals [J]. J. Phys. Chem. C, 2010, 114 (18):8212-8218.[16] Darbandi M, Nann T. One-pot synthesis of YF3@silica core/shell nanoparticles [J]. Chem. Commun., 2006(7):776-778.[17] Aoki K, Chen J Y, Yang N J, et al. Charge-transfer reactions of silver stearate-coated nanoparticles in suspensions [J]. Langmuir, 2003, 19 (23):9904-9909.[18] Zhou J, Chen M, Qiao X G, et al. Facile preparation method of SiO2/PS/TiO2 multilayer core-shell hybrid microspheres [J]. Langmuir, 2006, 22 (24):10175-10179.[19] Lin C K, Kong D Y, Liu X M, et al. Monodisperse and core-shell-structured SiO2@YBO3 ∶ Eu3+ spherical particles: Synthesis and characte-rization [J]. Inorg. Chem., 2007, 46 (7):2674-2681.[20] Lin C K, Zhao B, Wang Z L, et al. Spherical SiO2@GdPO4 ∶ Eu3+ core-shell phosphors:Sol-gel synthesis and characte-rization [J]. J. Nanosci. Nanotech., 2007, 7 (2):542-548.[21] Zhu L, Meng J, Cao X Q. Synthesis and photoluminescent properties of silica-coated LaCeF3 ∶ Tb nanocrystals [J]. J. Nanopart. Res., 2008, 10 (2):383-386.[22] Wang Q, He L P, Dai N, et al. Eu3+-doped LaPO4 and LaAlO3 nanosystems and their luminescence properties [J]. Science China, Series B: Chemistry (中国科学B辑:化学), 2009, 52 (8):1104-1112 (in Chinese).