XU Xing-zi, WANG Bi-ben, CHEN Yu-an. Photoluminescence Properties of ZnTe Nanopowder Synthesized by Hydrothermal Method[J]. Chinese Journal of Luminescence, 2011,32(5): 428-432
XU Xing-zi, WANG Bi-ben, CHEN Yu-an. Photoluminescence Properties of ZnTe Nanopowder Synthesized by Hydrothermal Method[J]. Chinese Journal of Luminescence, 2011,32(5): 428-432 DOI: 10.3788/fgxb20113205.0428.
Photoluminescence Properties of ZnTe Nanopowder Synthesized by Hydrothermal Method
ZnTe nanopowder was synthesized at 160 ℃ by hydrothermal method
in which the zinc and tellurium powders were used as the precursors. The powder was characterized by X-ray diffraction
X-ray energy dispersive spectroscopy
transmission electron microscopy and micro-Raman spectroscopy. The X-ray diffraction pattern indicates that the synthesized ZnTe particles are zinc blend structure. The X-ray energy dispersive spectrum exhibits that the main elements in the ZnTe nanopowder are zinc and tellurium and the impurity is oxygen. The image of transmission electron microscopy shows that the particles in the powder are diversified in size ranging from about 8 to 160 nm and the small particles aggregate easily. Raman spectrum shows there are three longitudinal optical phonon vibration modes of ZnTe centered at about 206
411
615 cm
-1
. The photoluminescence of ZnTe nanopowders was investigated at room temperature. The photoluminescence spectrum shows the weak recombination emission of donor-acceptor pairs presented at about 535.6 nm and the strong emission bands related to the complex defects containing Zn vacancies and impurity as well as isoelectronic oxygen trap at about 581
699 nm
respectively. The recombination emission of donor-acceptor pairs at room temperature is reasonably explained by the related theory.
关键词
Keywords
references
Shaaban E R, Kansal I, Mohamed S H, et al. Microstructural parameters and optical constants of ZnTe thin films with various thicknesses [J]. Physica B, 2009, 404 (20):3571-3576.[2] Wan B, Hu C, Feng B, et al. Optical properties of ZnTe nanorods synthesized via a facile low-temperature solvothermal route [J]. Mater. Sci. Eng. B, 2010, 171 (1-3):11-15.[3] Christian P, Liu E. Low temperature synthesis of metal chalcogenide nanoparticles in mesitylene [J]. Polyhedron, 2010, 29 (2):691-696.[4] Suriwong T, Thongtem S, Thongtem T. Solid-state synthesis of cubic ZnTe nanocrystals using a microwave plasma [J]. Mater. Lett., 2009, 63 (24-25):2103-2106.[5] Gandhi T, Raja K S, Misra M. Synthesis of ZnTe nanowires onto TiO2 nanotubular arrays by pulse-reverse electrodeposition [J]. Thin Solid Films, 2009, 517 (16):4527-4533.[6] Bacaksiz E, Aksu S, Ozer N, et al. The influence of substrate temperature on the morphology, optical and electrical pro-perties of thermal-evaporated ZnTe thin films [J]. Appl. Sur. Sci., 2009, 256 (5):1566-1572.[7] Shi Erwei, Chen Zhizhan, Yuan Rulin, et al. Hydrothermal Crystallography [M]. Beijing: Science Press, 2004:36 (in Chinese).[8] Mayers B, Xia Y. One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach [J]. J. Mater. Chem., 2002, 12 (6):1875-1881.[9] Wang B B, Xu X Z. Study on effects of time and temperature on growth of nanocrystalline zinc selenide synthesized by hydrothermal method [J]. J. Crystal Growth, 2009, 311 (23-24):4759-4762.[10] Meng Q, Jiang C, Mao S X. Temperature-dependent growth of zinc-blende-structured ZnTe nanostructures [J]. J. Crystal Growth, 2008, 310 (20):4481-4486.[11] Szuszkiewicz W, Morhange J F, Dynowska E, et al. Raman scattering studies of MBE-grown ZnTe nanowires [J]. Materials Science-Poland, 2008, 2 6(4):1053-1059.[12] Sato K, Hanafusa M, Noda A, et al. ZnTe pure green light-emitting diodes fabricated by thermal diffusion [J]. J. Crystal Growth, 2000, 214/215 :1080-1084.[13] Garcia J A, Remn V, Muoz A, et al. Photoluminescence study of radiative transitions in ZnTe bulk crystals [J]. J. Crystal Growth, 1998, 191 (4):685-691.[14] Tanaka T, Hayashida K, Nishio M, et al. Photoluminescence of Cl-doped ZnTe epitaxial layer grown by atmospheric pressure metalorganic vapor phase epitaxy [J]. J. Appl. Phys., 2003, 94 (3):1527-1530.[15] Tews H, Schneider M, Legros R. Laser-induced donor diffusion in ZnTe [J]. J. Appl. Phys., 1983, 54 (2):677-682.[16] Kononenko V K. Injection electroluminescence of zinc telluride [J]. J. Appl. Spectroscopy, 1975, 23 (3):1269-1289.[17] Morozova N K, Karetenikov I A, Blinov V V, et al. Cathodoluminescence spectra of Cd1-xZnxTe solid solution [J]. J. Appl. Spectroscopy, 2000, 67 (1):127-133.[18] Merz J L. Isoelectronic oxygen trap in ZnTe [J]. Phys. Rev., 1968, 176 (3):961-968.[19] Kang Z T, Menkara H, Wanger B K, et al. Oxygen-doped ZnTe phosphors for synchrotron X-ray imaging detectors [J]. J. Electron. Mater., 2006, 35 (6):1262-1266.[20] Saito K, Yamaguchi K, Tanaka T, et al. Post-annealing effect upon electrical and optical properties of MOVPE grown P-doped ZnTe homoepitaxial layers [J]. J. Mater. Sci.: Mater. Electron., 2009, 20 (Supp.1):S264-S267.[21] Xu Xurong, Su Mianzeng. Luminescence and Luminous Materials [M]. Beijing: Chemistry Industry Press, 2004:127,547 (in Chinese).[22] Sun C Q. Size dependence of nanostructures:Impact of bond order deficiency [J]. Progress in Solid State Chemistry, 2007, 35 (1):1-159.[23] Yu Y, Nam S, Lee K, et al. Photoluminescence characteristics of ZnTe epilayers [J]. J. Appl. Phys., 2001, 90 (2):807-812.[24] Chang J H, Takai T, Koo B H, et al. Aluminum-doped n-type ZnTe layers grown by molecular-beam epitaxy [J]. Appl. Phys. Lett., 2001, 79 (6):785-787.[25] Yang Xugang, Wu Qilin. Raman Spectrocopy and Application [M]. Beijing: National Defence Inudtry Press, 2008:5 (in Chinese).