WANG Lei, ZHANG Xia, HAO Zhen-dong, LUO Yong-shi, WANG Xiao-jun, ZHANG Jia-hua. Energy Transfer in Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> ∶ Ce<sup>3+</sup>, Cr<sup>3+</sup> and Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> ∶ Ce, Pr, Cr[J]. Chinese Journal of Luminescence, 2011,32(5): 417-422
WANG Lei, ZHANG Xia, HAO Zhen-dong, LUO Yong-shi, WANG Xiao-jun, ZHANG Jia-hua. Energy Transfer in Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> ∶ Ce<sup>3+</sup>, Cr<sup>3+</sup> and Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> ∶ Ce, Pr, Cr[J]. Chinese Journal of Luminescence, 2011,32(5): 417-422 DOI: 10.3788/fgxb20113205.0417.
Energy Transfer in Y3Al5O12 ∶ Ce3+, Cr3+ and Y3Al5O12 ∶ Ce, Pr, Cr
site are prepared by solid state reaction. A broad emission spectrum composed a yellow emission band from Ce
3+
a light red emission line from Pr
3+
and a deep red emission line from Cr
3+
which are generated through energy transfer among the dopant ions. The study of photoluminescence and fluorescence decay indicates that there exist energy transfers from Ce
3+
Cr
3+
and Ce
3+
Pr
3+
Cr
3+
. The effect of energy transfer on relative intensities of the three emissions is analyzed. A white LED is fabricated using a blue LED chip coated with the triply doped phosphor and shows a color rendering index of 81.4 and 80.4
respectively.It is higher than that either using Ce
3+
and Cr
3+
doubly doped phosphor or Ce
3+
singly doped phosphors.
关键词
Keywords
references
Kim J K, Schubert E F. Transcending the replacement paradigm of solid-state lighting [J]. Opt. Express, 2008, 16 (26):21835-21842.[2] Oh J R, Cho S H, Lee Y H, et al. Enhanced forward efficiency of Y3Al5O12 ∶ Ce3+ phosphor from white light-emitting diodes using blue-pass yellow-reflection filter [J]. Opt. Express, 2009, 17 (9):7450-7457.[3] Zhang Yan, Zhong Ruixia, Zhang Xia, et al. Synthesis and luminescent properties of green long-lasting phosphorescent materials MgAl2O4 ∶ Mn2+ [J]. Chin. J. Lumin. (发光学报), 2010, 31 (4):489-492 (in Chinese).[4] Mueller-Mach R, Mueller G O, Krames M R, et al. High-power phosphor-converted light-emitting diodes based on Ⅲ-nitrides [J]. IEEE J. Select. Topics Qunt. Electron., 2002, 8 (2):339-345.[5] Yang H H, Kim Y S. Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG ∶Ce nanocrystalline phosphors [J]. J. Lumin., 2008, 128 (10):1570-1576.[6] Pan Y, Wu M, Su Q. Tailored photoluminescence of YAG ∶ Ce phosphor through various methods [J]. J. Phys. Chem. Solids, 2004, 65 (5):845-850.[7] Wang W, Tang J, Hus S T. Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3Al5O12 yellow phosphors [J]. Chem. Phys. Lett., 2008, 457 (1):103-105.[8] Kinsman K M, McKittrick J. Phase development and luminescence in chromium-doped yttrium aluminum garnet (YAG ∶ Cr) phosphors [J]. J. Am. Ceram. Soc., 1994, 77 (11):2866-2872.[9] zen G G, Forte O, Di Bartolo B. Downconversion and upconversion dynamics in Pr-doped Y3Al5O12 crystals [J]. J. Appl. Phys., 2005, 97 (1):013510-1-5.[10] zen G G, Forte O, Di Bartolo B. Upconversion dynamics in Pr-doped YAlO3 and Y3Al5O12 laser crystals [J]. Optical Materials, 2005, 27 (11):1664-1671.[11] Malinowski M, Szczepanski P, Woliski W, et al. Inhomogeneity study of Pr3+-doped yttrium aluminium garnet using time-resolved spectroscopy [J]. J. Phys.: Condens. Matter, 1993, 5 (35):6469-6482.[12] Shen Y R, Bray K L. Effect of pressure and temperature on the lifetime of Cr3+ in yttrium aluminum garnet [J]. Phys. Rev. B, 1997, 56 (12):10882-10891.[13] Jia W W, Liu H, Jaffe H, et al. Spectroscopy of Cr3+ and Cr4+ ions in forsterite [J]. Phys. Rev. B, 1991, 43 (7): 5234-5242.