Qiao-chu YANG, He-yang SUN, Fu-long ZHANG, et al. ZnO UV Photodetector Based on Sandwich Structure[J]. Chinese journal of luminescence, 2020, 41(9): 1153-1157.
DOI:
Qiao-chu YANG, He-yang SUN, Fu-long ZHANG, et al. ZnO UV Photodetector Based on Sandwich Structure[J]. Chinese journal of luminescence, 2020, 41(9): 1153-1157. DOI: 10.37188/fgxb20204109.1153.
ZnO UV photodetector is fabricated with the sandwich structure by radio frequency magnetron sputtering
based on the traditional metal semiconductor metal(MSM) single-layer ZnO UV photodetectors
another layer of ZnO film is laid to construct the sandwich device structure. At 5 V bias
the responsivity of the photodetector is 0.05 A/W
and the dark current is 1.44×10
-5
A. The integrity of the device is significantly improved compared with the traditional single-layer ZnO UV photodetector. This is mainly due to the fact that the depletion region of the metal semiconductor contact can directly absorb the incident light
improve the absorption efficiency of the incident light
and avoid the shielding effect of the traditional upper electrode to the incident light.
关键词
Keywords
references
WANG X, LIU K W, CHEN X, et al.. Highly wavelength-selective enhancement of responsivity in Ag nanoparticle-modified ZnO UV photodetector[J]. ACS Appl. Mater. Interfaces , 2017, 9(6):5574-5579.
ZHU H, SHAN C X, YAO B, et al.. High spectrum selectivity ultraviolet photodetector fabricated from an n-ZnO/p-GaN heterojunction[J]. J. Phys. Chem. C, 2008, 112(51):20546-20548.
PEI J A, JIANG D Y, ZHAO M, et al.. Controlled enhancement range of the responsivity in ZnO ultraviolet photodetectors by Pt nanoparticles[J] . Appl. Surf. Sci. , 2016, 389:1056-1061.
LAI W C, CHEN J T, YANG Y Y. ZnO-SiO 2 solar-blind photodetectors on flexible polyethersulfone substrate with organosilicon buffer layer[J]. Appl. Phys. Lett. , 2013, 102(19):191115-1-4.
HUANG Y, ZHANG L C, WANG J B, et al.. Enhanced photoresponse of n-ZnO/p-GaN heterojunction ultraviolet photodetector with high-quality CsPbBr 3 films grown by pulse laser deposition[J]. J. Alloys Compd. , 2019, 802:70-75.
HUANG G Z, ZHANG P P, BAI Z M. Self-powered UV-visible photodetectors based on ZnO/graphene/CdS/electrolyte heterojunctions[J]. J. Alloys Compd. , 2019, 776:346-352.
SHEN D Z, MEI Z X, LIANG H L, et al.. ZnO-based material, heterojunction and photoelctronic device[J]. Chin. J. Lumin. , 2014, 35(1):1-60. (in Chinese)
TIAN C G, JIANG D Y, LI B Z, et al.. Performance enhancement of ZnO UV photodetectors by surface plasmons[J]. ACS Appl. Mater. Interfaces , 2014, 6(3):2162-2166.
SUN L, JIANG D Y, ZHANG G Y, et al.. Responsivity enhancement of ZnO/Pt/MgZnO/SiO 2 and MgZnO/Pt/ZnO/SiO 2 structured ultraviolet detectors by surface plasmons in Pt nanoparticles[J]. J. Appl. Phys. , 2016, 119(4):044508-1-5.
FATHIMA N, PRADEEP N, BALAKRISHNAN J. Investigations of the effects of electrode geometry and mechanical stress on antimony doped zinc oxide nanostructures based MSM UV photodetectors fabricated on flexible substrates[J]. Solar Energy Mater. Solar Cells , 2019, 194:207-214.
INAMDAR S I, RAJPURE K Y. High-performance metal-semiconductor-metal UV photodetector based on spray deposited ZnO thin films[J]. J. Alloys Compd. , 2014, 595:55-59.
ZHAO M, WANG X, YANG G, et al.. Bias induced cutoff redshift of photocurrent in ZnO ultraviolet photodetectors[J]. Appl. Surf. Sci. , 2015, 359:432-434.
DU X L, MEI Z X, LIU Z L, et al.. Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors[J]. Adv. Mater. , 2009, 21(45):4625-4630.
JU Z G, SHAN C X, JIANG D Y, et al.. Mg x Zn 1- x O-based photodetectors covering the whole solar-blind spectrum range[J]. Appl. Phys. Lett. , 2008, 93(17):173505-1-3.
ZHOU X, JIANG D Y, ZHAO M, et al.. Polarization induced two-dimensional electron gas in ZnO/ZnMgO heterointerface for high-performance enhanced UV photodetector[J]. J. Alloys Compd. , 2020, 820:153416-1-7.
DUAN Y H, CONG M Y, JIANG D Y, et al.. ZnO thin film flexible UV photodetectors:regulation on the ZnO/Au interface by piezo-phototronic effect and performance outcomes[J]. Adv. Mater. Interfaces , 2020, 6(16):1900470-1-8.