Zi-juan LI, Xue AN, Hao NIU, et al. Synthesis and Spectral Properties of NaYF4: Yb3+, Er3+ Nanoparticles via Thermolysis Method[J]. Chinese journal of luminescence, 2020, 41(9): 1128-1136.
DOI:
Zi-juan LI, Xue AN, Hao NIU, et al. Synthesis and Spectral Properties of NaYF4: Yb3+, Er3+ Nanoparticles via Thermolysis Method[J]. Chinese journal of luminescence, 2020, 41(9): 1128-1136. DOI: 10.37188/fgxb20204109.1128.
Synthesis and Spectral Properties of NaYF4: Yb3+, Er3+ Nanoparticles via Thermolysis Method
Mono-dispersed up-converting luminescent nanoparticles of NaYF
4
:20%Yb
3+
2%Er
3+
with uniform size and morphology were prepared
via
the thermolysis method using rare earth chloride as the precursor. The crystal structure
morphology
and upconversion properties of the samples were characterized by X-ray diffraction(XRD)
scanning electron microscope(SEM)
energy dispersive spectrometer(EDS)
X-ray photoelectron spectroscopy(XPS) and photoluminescence spectrum. The results show that the samples belong to the hexagonal system(space group:
P
6) and therefore verifies the phase purity of the samples. The sample exhibits the morphology of hexagonal disc with a diagonal length of about 77 nm and a thickness of about 54 nm. Under the excitation of 980 nm laser
the samples exhibit characteristic emission of Er
3+
peaked at 523 nm(green)
542 nm(green) and 656 nm(red)
which can be attributed to the transition from the level of
2
H
11/2
4
S
3/2
and
4
F
9/2
to the level of
4
I
15/2
respectively. Both absorption of green and red were due to two-photon processes.
关键词
Keywords
references
SIAL M A Z G, DIN M A U, WANG X. Multimetallic nanosheets: synthesis and applications in fuel cells[J]. Chem. Soc. Rev ., 2018, 47(16):6175-6200.
CLANCY A J, BAYAZIT M K, HODGE S A, et al .. Charged carbon nanomaterials:redox chemistries of fullerenes, carbon nanotubes, and graphenes[J]. Chem. Rev ., 2018, 118(16):7363-7408.
CHEN Y, FAN Z X, ZHANG Z C, et al .. Two-dimensional metal nanomaterials:synthesis, properties, and applications[J]. Chem. Rev ., 2018, 118(13):6409-6455.
MARKWALTER C F, KANTOR A G, MOORE C P, et al .. Inorganic complexes and metal-based nanomaterials for infectious disease diagnostics[J]. Chem. Rev ., 2019, 119(2):1456-1518.
XIANG G T, LIU X T, XIA Q, et al .. Upconversion luminescence properties of β-NaYF 4 :Yb 3+ /Er 3+ @β-NaYF 4 :Yb 3+ [J]. Chin. J. Lumin ., 2020, 41(6):679-683. (in Chinese)
WANG X, ZHUANG J, PENG Q, et al .. Hydrothermal synthesis of rare-earth fluoride nanocrystals[J]. Inorg. Chem ., 2006, 45(17):6661-6665.
YAN Z G, YAN C H. Controlled synthesis of rare earth nanostructures[J]. J. Mater. Chem ., 2008, 18(42):5046-5059.
YANG J F, SONG L N, WANG X X, et al .. Facile synthesis and color-tunable properties of monodisperse β-NaYF 4 : Ln 3+ ( Ln =Eu, Tb, Tm, Sm, Ho) microtubes[J]. Dalton Trans ., 2018, 47(4):1294-1302.
ZHANG M, YAN J H, SHI C S. Study on properties of optical spectroscopy of RE -doped KMgF 3 functional materials[J]. J. Changchun Univ. Sci. Technol ., 2005, 28(1):79-83. (in Chinese)
XIE S W, TONG C, TAN H H, et al .. Hydrothermal synthesis and inkjet printing of hexagonal-phase NaYF 4 : Ln 3+ upconversion hollow microtubes for smart anti-counterfeiting encryption[J]. Mater. Chem. Front ., 2018, 2(11):1997-2005.
CHEN G Y, QIU H L, PRASAD P N, et al .. Upconversion nanoparticles:design, nanochemistry, and applications in theranostics[J]. Chem. Rev ., 2014, 114(10):5161-5214.
GAI S L, LI C X, YANG P P, et al .. Recent progress in rare earth micro/nanocrystals:soft chemical synthesis, luminescent properties, and biomedical applications[J]. Chem. Rev ., 2014, 114(4):2343-2389.
BOYER J C, VETRONE F, CUCCIA L A, et al .. Synthesis of colloidal upconverting NaYF 4 nanocrystals doped with Er 3+ , Yb 3+ and Tm 3+ , Yb 3+ via thermal decomposition of lanthanide trifluoroacetate precursors[J]. J. Am. Chem. Soc ., 2006, 128(23):7444-7445.
ZI L, ZHANG D, DE G J H. Self-assembly NaGdF 4 nanoparticles:phase controlled synthesis, morphology evolution, and upconversion luminescence properties[J]. Mater. Res. Express , 2016, 3(2):025009-1-8.
SMITH B R, GAMBHIR S S. Nanomaterials for in vivo imaging[J]. Chem. Rev ., 2017, 117(3):901-986
LAURENCE T A, LIU Y, ZHANG M, et al .. Measuring activation and luminescence time scales of upconverting NaYF 4 :Yb, Er nanocrystals[J]. J. Phys. Chem . C, 2018, 122(41):23780-23789.
QIU Z L, SHU J, TANG D P. NaYF 4 :Yb, Er upconversion nanotransducer with in situ fabrication of Ag 2 S for near-infrared light responsive photoelectrochemical biosensor[J]. Anal. Chem ., 2018, 90(20):12214-12220.
JANJUA R A, GAO C, DAI R C, et al .. Na + -driven nucleation of NaYF 4 :Yb, Er nanocrystals and effect of temperature on their structural transformations and luminescent properties[J]. J. Phys. Chem . C, 2018, 122(40):23242-23250.
WIESHOLLER L M, GENSLEIN C, SCHROTER A, et al .. Plasmonic enhancement of NIR to UV upconversion by a nanoengineered interface consisting of NaYF 4 :Yb, Tm nanoparticles and a gold nanotriangle array for optical detection of Vitamin B12 in serum[J]. Anal. Chem ., 2018, 90(24):14247-14254.
LI C X, YANG J, QUAN Z W, et al .. Different microstructures of β-NaYF 4 fabricated by hydrothermal process:effects of pH values and fluoride sources[J]. Chem. Mater ., 2007, 19(20):4933-4942.
MAI H X, ZHANG Y W, SI R, et al .. High-quality sodium rare-earth fluoride nanocrystals:controlled synthesis and optical properties[J]. J. Am. Chem. Soc ., 2006, 128(19):6426-6436.
LIU J, CHEN G Y, HAO S W, et al .. Sub-6 nm monodisperse hexagonal core/shell NaGdF 4 nanocrystals with enhanced upconversion photoluminescence[J]. Nanoscale , 2017, 9(1):91-98.
HUANG B R, BERGSTRAND J, DUAN S, et al .. Overtone vibrational transition-induced lanthanide excited-state quenching in Yb 3+ /Er 3+ -doped upconversion nanocrystals[J]. ACS Nano , 2018, 12(11):10572-10575.
BALAJI R, KUMAR S, REDDY K L, et al .. Near-infrared driven photocatalytic performance of lanthanide-doped NaYF 4 @CdS core-shell nanostructures with enhanced upconversion properties[J]. J. Alloys Compd ., 2017, 724:481-491.
SIVAKUMAR S, VAN VEGGEL F C J M, MAY P S. Near-infrared(NIR) to red and green up-conversion emission from silica sol-gel thin films made with La 0.45 Yb 0.50 Er 0.05 F 3 nanoparticles, hetero-looping-enhanced energy transfer(Hetero-LEET):a new up-conversion process[J]. J. Am. Chem. Soc ., 2007, 129(3):620-625.
Preparation, Luminescence Mechanism and Temperature Sensing Properties of KYb2F7∶2% Er3+
Advances in Luminescence Thermal Enhancement of Rare Earth Activated Phosphors
Up-conversion Luminescence and Temperature Sensing Performance of Novel Ba3In(PO4)3∶Yb3+, Ho3+ Phosphor
Temperature Sensing Characteristics of Y7O6F9∶Er,Yb/PAN Composite Fibers Based on Up-conversion Luminescence
High-performance ZnS∶Cu Based Mechanoluminescent Elastomers and Their Applications in Visually Interactive Fabrics
Related Author
LI Xinyun
DAI Mengmeng
FU Zuoling
CHEN Rui
LIU Rui
WANG Pengfei
LIN Hang
CHENG Yao
Related Institution
College of Physics, Jilin University
Fujian College, University of Chinese Academy of Sciences
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
School of Chemistry, Fuzhou University
School of Materials Science and Engineering, China University of Geosciences