Chun-yu ZHANG, Hai-nan XU, Yue SONG. Spectral Simulation of Electroluminescence Performance of Organic Electroluminescent Devices with Different Microcavity Structures[J]. Chinese journal of luminescence, 2020, 41(8): 984-990.
DOI:
Chun-yu ZHANG, Hai-nan XU, Yue SONG. Spectral Simulation of Electroluminescence Performance of Organic Electroluminescent Devices with Different Microcavity Structures[J]. Chinese journal of luminescence, 2020, 41(8): 984-990. DOI: 10.37188/fgxb20204108.0984.
Spectral Simulation of Electroluminescence Performance of Organic Electroluminescent Devices with Different Microcavity Structures
we discuss the influence of different microcavity structures of the organic light-emitting devices(OLEDs) in order to improve the luminescence performance. We use the transfer matrix method to simulate and calculate the electroluminescence spectrum(EL)of the OLED
the microcavity organic light-emitting devices(MOLED) and the coupling microcavity organic light-emitting devices(CMC). And then we compare their EL characteristics. The structures of OLED
MOLED and CMC are glass/ITO(134 nm)/NPB(74 nm)/Alq
3
(62 nm)/Al
glass/DBR/ITO(134 nm)/NPB(74 nm)/Alq
3
(62 nm)/Al
and glass/DBR
1
/filler/DBR
2
/ITO(134 nm)/NPB(74 nm)/Alq
3
(62 nm)/Al
respectively. The simulation results show that
the EL spectrum shape of the OLED has a broad spectrum band with the main peak at 561 nm and the shoulder peak at 495 nm
the MOLED has a narrow EL spectrum with single peak at 534 nm
the CMC has a twin narrow EL spectrum with the peaks at 520 nm and 556 nm respectively. The MOLED has the purest color. The integrated area of the OLED and the MOLED are basically the same. The CMC has the largest integrated area
which is 1.1 times of the former two devices. The simulation results show that CMC structure can be used to improve the luminescence efficiency and the color purity of the OLED.
关键词
Keywords
references
TANG C W, VANSLYKE S A. Organic electroluminescent diodes[J]. Appl. Phys. Lett ., 1987, 51(12):913-915.
BALDO M A, THOMPSON M E, FORREST S R. High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer[J]. Nature , 2000, 403(6771):750-753.
PENG X K, LIN W Y, YU Y, et al .. Fabrication of highly efficient tandem organic light-emitting device[J]. Chin. J. Lumin ., 2019, 40(10):1281-1287. (in Chinese)
ZU J, CHEN P, SHENG R, et al .. Highly efficient blue organic light-emitting diodes[J]. Chin. J. Lumin ., 2017, 38(4):487-491. (in Chinese)
MAZZEO M, MARIANO F, GENCO A, et al .. High efficiency ITO-free flexible white organic light-emitting diodes based on multi-cavity technology[J]. Org. Electron ., 2013, 14(11):2840-2846.
GUAN Y X, CHEN L J, CHEN P, et al .. Influence of MnO 3 on photoelectric performance in organic light emitting diodes[J]. Spectrosc. Spectral Anal ., 2016, 36(3):648-652. (in Chinese)
ZHANG C Y, WANG Q K, RONG H, et al .. Study of green phosphorescent microcavity organic light-emitting devices[J]. Acta Opt. Sinica , 2015, 35(6):0623002-1-6. (in Chinese)
JIANG X F, SHAO L B, ZHANG S X, et al .. Chaos-assisted broadband momentum transformation in optical microresonators[J]. Science , 2017, 358(6361):344-347.
ZHANG C Y, LIU X Y, TAO G T, et al .. Optical properties of organic film in a coupled microcavity[J]. Chin. J. Lumin ., 2007, 28(3):349-352. (in Chinese)
BAYINDIR M, TANRISEVEN S, AYDINLI A, et al .. Strong enhancement of spontaneous emission in amorphous-silicon-nitride photonic crystal based coupled-microcavity structures[J]. Appl. Phys. A, 2001, 73(1):125-127.
STANLEY R P, HOUDRÉ R, OESTERLE U, et al .. Coupled semiconductor microcavities[J] . Appl. Phys. Lett ., 1994, 65(16):2093-2095.
BROSSARD F S F, REID B P L, CHAN C C S, et al .. Confocal microphotoluminescence mapping of coupled and detuned states in photonic molecules[J]. Opt. Express , 2013, 21(14):16934-16945.
HAMEL P, HADDADI S, RAINERI F, et al .. Spontaneous mirror-symmetry breaking in coupled photonic-crystal nanolasers[J]. Nat. Photonics , 2015, 9(5):311-315.
BORISKINA S V. Photonic molecules and spectral engineering[M]. CHREMMOS I, SCHWELB O, UZUNOGLU N. Photonic Microresonator Research and Applications . Boston, MA: Springer, 2010: 393-421.
ZHANG C Y, WANG Q K, QIN L, et al .. Simulation and experimental verification for the angle dependence of the microcavity organic light emitting device[J]. Chin. J. Lumin ., 2015, 36(4):454-458. (in Chinese)
DODABALAPUR A, ROTHBERG L J, JORDAN R H, et al .. Physics and applications of organic microcavity light emitting diodes[J]. J. Appl. Phys ., 1996, 80(12):6954-6964.