Your Location:
Home >
Browse articles >
Photoluminescence properties of Bi3+-activated garnet blue-cyan luminescent materials
Updated:2025-01-10
    • Photoluminescence properties of Bi3+-activated garnet blue-cyan luminescent materials

      Enhanced Publication
    • In the field of LED full spectrum light sources, researchers have prepared a solid solution luminescent material GdSr2ScMgGe3O12 with Bi3+doped garnet structure using high-temperature solid-phase method, achieving effective excitation in the ultraviolet violet range and providing a solution for low blue full spectrum WLED.
    • DENG Wenjie

      1 ,  

      WANG Haiyi

      1 ,  

      HUANG Deicai

      1234 ,  

      PENG Jiaqing

      134 ,  

      YE Xinyu

      134 ,  
    • Chinese Journal of Luminescence   Pages: 1-10(2025)
    • DOI:10.37188/CJL.20240308    

      CLC: O482.31
    • CSTR:32170.14.CJL.20240308    
    • Published Online:10 January 2025

    Scan QR Code

  • Cite this article

    PDF

  • DENG Wenjie,WANG Haiyi,HUANG Deicai,et al.Photoluminescence properties of Bi3+-activated garnet blue-cyan luminescent materials[J].Chinese Journal of Luminescence, DOI:10.37188/CJL.20240308 CSTR: 32170.14.CJL CSTR: 32170.14.CJL.20240308.

  •  
  •  
  • AI Introduction

  • Chinese Full Text(HTML)

  • Figs(5) Tabs(0)

  • References

  • Publication Info

  • Supplements(2)

  • Metrics

1 引 言

讨论了全光谱WLED照明光源的需求背景,指出现有商业WLED光源存在蓝光溢出问题,可能导致健康风险。介绍了全光谱WLED光源的概念,强调了紫光LED芯片在实现全光谱WLED中的优势。讨论了Bi3+离子作为发光材料激活剂的优势,以及石榴石结构材料作为发光材料基质的特点。指出了现有Bi3+掺杂石榴石蓝青光材料的局限性。最后,介绍了本文设计的GdSr2ScMgGe3O12石榴石固溶体材料,通过Bi3+离子掺杂实现了宽带蓝青光发射,与紫光芯片组合制备出高显色指数、低色温、低蓝光的全光谱WLED光源,展示了其在全光谱照明中的潜在应用价值。

2 实 验

介绍了Bi3+激活石榴石蓝青光发光材料的实验部分。首先,采用两步高温固相法制备了GdSr2ScMgGe3O12:xBi3+发光材料,原料包括Gd2O3、SrCO3、Sc2O3、MgO、GeO2和Bi2O3,经过混合研磨、预烧和烧制等步骤得到粉末状样品。其次,使用X射线粉末衍射仪、GSAS软件、VESTA软件、FE-SEM、EDS分析仪、紫外-可见-近红外分光光度计、爱丁堡荧光光谱仪等仪器对样品的物相、结构、微观形貌、成分、漫反射光谱、荧光光谱等进行表征。然后,将优化后的GSSMGO:Bi3+蓝青色荧光粉与商用黄色、红色荧光粉及紫光芯片集成,制备了暖白光pc-LED器件,通过光纤光谱仪监测光谱并优化荧光粉比例,测试发光性能。最后,采用DFT理论计算对GdSr2ScMgGe3O12晶体结构进行结构优化和电子性质计算,使用VASP软件包,设置合适的k点网格和平面波截止能量,建立收敛准则。

3 结果与讨论

固相法制备的GSSMGO:xBi3+样品通过XRD分析显示为纯相,与标准卡片相匹配,无杂峰。Rietveld结构精修结果表明GSSMGO晶体结构为立方晶系,空间群Iad,晶胞参数如表S1。Bi3+更倾向于占据[Sr/GdO8]十二面体位点,晶胞体积因Bi3+取代Sr2+而收缩,与XRD衍射峰位置向高角度偏移一致。GSSMGO:10%Bi3+样品的形貌分析显示颗粒不规则,粒径分布在40 ~ 100 µm,Bi3+均匀分布在颗粒表面。GSSMGO和GSSMGO:xBi3+样品的漫反射光谱显示Bi3+离子掺杂后出现新的宽吸收带,对应于Bi3+离子的1S0→3P1能级跃迁。GSSMGO的光学带隙为3.97 eV,为从G到G的直接电子跃迁。GSSMGO:10%Bi3+样品在室温下的光致发射和激发光谱显示在290 nm激发下出现近紫外发射带,归因于Bi3+占据[Sr/GdO8]格位的3P1→1S0跃迁。样品在380 nm激发下表现出峰值波长在480 nm附近的蓝青光发射。Bi3+的电子构型为[Xe] 4f145d106s2,对晶体场敏感,不同晶体格位的Bi3+离子表现出不同的发光。不同Bi3+掺杂浓度下的发射光谱显示,随着Bi3+掺杂浓度的增加,样品的发光强度逐渐增强,在x = 10%处达到最大,之后出现浓度猝灭效应。GSSMGO:10%Bi3+荧光粉在380 nm激发下的光致发光内量子效率(IQE)、吸收效率(AE)和发光外量子效率(EQE)分别为47.4%、39.2%和18.6%。GSSMGO:10%Bi3+荧光粉的温度依赖性光谱显示,发光积分强度随温度升高而降低,在423 K下保持为室温下的48.2%。热激活能(Ea)为0.22 eV,表明热猝灭性能一般。将GSSMGO:10%Bi3+荧光粉应用于pc-WLED,与YAG:Ce3+黄色荧光粉和CaAlSiN3:Eu2+红粉组合,获得暖白光发射LED器件,提高了显色指数和降低了相关色温。

4 结 论

通过固相法成功制备Bi3+掺杂石榴石结构固溶体蓝青光发射发光材料GSSMGO:Bi3+,Bi3+可能同时占据两种晶格位置,表现出近紫外光和宽带蓝青光发射特性。GSSMGO:10%Bi3+在380 nm激发下具有47.4%的光致发光内量子产率和39.2%的吸收率,但在423 K时发光强度下降至室温的48.2%,发光效率和热稳定性需进一步提高。将GSSMGO:10%Bi3+荧光粉与商业黄粉、红粉及紫光LED芯片结合,可实现低蓝光、低色温、高显色指数的全光谱LED光源,具有良好的全光谱照明应用前景。

* The above content is automatically generated by AI and is for reference only. This website does not assume any commercial or legal responsibility for the consequences arising from the use of the following content on this website.

74

Views

27

Downloads

0

CSCD

Alert me when the article has been cited
Submit
Tools
Download
Export Citation
Share
Add to favorites
Add to my album

Related Articles

Recent Progress on Bi3+-doped Luminescent Material
Cu(Ⅰ)-based Metal Halide Luminescence Material (C12H24O6)NaCuBr2 for Full-spectrum Lighting Application
Narrow-band Blue Emission of Bi3+ Based on High Crystal Structure Symmetry
Protective Light Source for Chinese Light Color Painting Based on Color Difference Analysis
Preparation of CaAlSiN3:Eu2+ Phosphor Doped PC Lampshade for Plant Growth Lights

Related Author

LIN Jun
LI Guogang
DANG Peipei
WEI Yi
LIU Dongjie
ZHANG Min
HUANG Jinglong
JIN Jiancte

Related Institution

Faculty of Materials Science and Chemistry, China University of Geosciences
School of Applied Chemistry and Engineering, University of Science and Technology of China
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
School of Physics and Optoelectronics, South China University of Technology
The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, School of Materials Science and Engineering, South China University of Technology
0