浏览全部资源
扫码关注微信
1.白城师范学院 吉林省西部清洁能源重点实验室, 吉林 白城 137000
2.中国科学院长春应用化学研究所 稀土资源利用国家重点实验室, 吉林 长春 130022
Received:04 December 2024,
Revised:23 December 2025,
Published:25 April 2025
移动端阅览
黄大誉,刘冬杰,党佩佩等.锡基金属卤化物钙钛矿:合成、发光性能与LED应用[J].发光学报,2025,46(04):665-682.
HUANG Dayu,LIU Dongjie,DANG Peipei,et al.Tin-based Metal Halide Perovskite: Synthesis, Luminescence Performance and LED Applications[J].Chinese Journal of Luminescence,2025,46(04):665-682.
黄大誉,刘冬杰,党佩佩等.锡基金属卤化物钙钛矿:合成、发光性能与LED应用[J].发光学报,2025,46(04):665-682. DOI: 10.37188/CJL.20240305. CSTR: 32170. 14. CJL. 20240305.
HUANG Dayu,LIU Dongjie,DANG Peipei,et al.Tin-based Metal Halide Perovskite: Synthesis, Luminescence Performance and LED Applications[J].Chinese Journal of Luminescence,2025,46(04):665-682. DOI: 10.37188/CJL.20240305. CSTR: 32170. 14. CJL. 20240305.
发光二极管是新型显示技术的核心部件,更是新一代信息技术产业之首。钙钛矿发光二极管作为最新兴起的显示技术,具有高色纯度、广色域、加工工艺简单、低成本等优势,是国内外光电器件领域的研究热点。然而,需要使用对环境有害的卤化铅钙钛矿才能实现高功率转换效率。目前,卤化锡钙钛矿因具有低的激子结合能和良好的电荷载流子迁移率成为最有前途的替代品。由于具有相似的离子半径与价态,锡(Sn)可以部分或完全替换有毒的铅(Pb)来实现卤化铅钙钛矿的低铅化或无毒化;同时,Sn部分或完全替换Pb会产生新的发光性质。尽管锡基金属卤化物钙钛矿在提升光电性能方面取得了较大的进展,但其制备的发光器件参数仍低于铅基卤化物钙钛矿。本文旨在详细综述锡基金属卤化物钙钛矿的合成制备和光电特性方面的研究进展及其面临的挑战,探讨晶体结构与光电性能之间的构效关系,回顾锡基钙钛矿在电致发光器件应用方面的研究进展,主要集中在采取策略来改善锡基钙钛矿材料的薄膜特性,以提高器件性能。该综述为锡基金属卤化物钙钛矿的合成、发光性能与LED应用提供了参考。
Light-emitting diodes (LEDs) are the core components of new display technology and the leader of the new generation of information technology industry. Perovskite light-emitting diodes (PeLEDs), as the latest emerging display technology, have advantages such as high color purity, wide color gamut, simple processing technology, and low cost. PeLEDs are a research hotspot in the field of optoelectronic devices at home and abroad. However, it is necessary to use lead halide perovskites that are harmful to the environment in order to achieve high power conversion efficiency. Among them, tin halide perovskite is the most promising alternative, which has low exciton binding energy and good charge carrier mobility. Due to similar ionic radii and valence states, tin (Sn) can partially or completely replace toxic lead (Pb) to achieve low lead or non-toxic lead halide perovskites. Meanwhile, partial or complete replacement of Pb by Sn will result in new luminescent properties. Although significant progress has been made in improving the optoelectronic properties of Sn based halide perovskites, the parameters of the luminescent devices prepared from them are still lower than those of lead-based halide perovskites. This article aims to provide a detailed overview of the research progress and challenges faced in the synthesis, preparation, and optoelectronic properties of Sn based halide perovskites. The relationship between crystal structure and optoelectronic properties is explored. The research progress in the application of Sn based perovskites in electroluminescent devices are reviewed. The focus is on strategies adopted to improve the thin film properties of Sn based perovskite materials to enhance device performance. This review provides a reference for the synthesis, luminescent properties, and LEDs applications of tin based metal halide perovskites.
XING G C , MATHEWS N , LIM S S , et al . Low-temperature solution-processed wavelength-tunable perovskites for lasing [J]. Nat. Mater. , 2014 , 13 ( 5 ): 476 - 480 . doi: 10.1038/nmat3911 http://dx.doi.org/10.1038/nmat3911
ZHU H M , FU Y P , MENG F , et al . Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors [J]. Nat. Mater. , 2015 , 14 ( 6 ): 636 - 642 . doi: 10.1038/nmat4271 http://dx.doi.org/10.1038/nmat4271
CHO H , JEONG S H , PARK M H , et al . Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes [J]. Science , 2015 , 350 ( 6265 ): 1222 - 1225 . doi: 10.1126/science.aad1818 http://dx.doi.org/10.1126/science.aad1818
XIAO Z G , KERNER R A , ZHAO L F , et al . Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites [J]. Nat. Photonics , 2017 , 11 ( 2 ): 108 - 115 . doi: 10.1038/nphoton.2016.269 http://dx.doi.org/10.1038/nphoton.2016.269
WALSH A . Principles of chemical bonding and band gap engineering in hybrid organic-inorganic halide perovskites [J]. J. Phys. Chem. C , 2015 , 119 ( 11 ): 5755 - 5760 . doi: 10.1021/jp512420b http://dx.doi.org/10.1021/jp512420b
AHMAD K , ANSARI S N , NATARAJAN K , et al . A (CH 3 NH 3 ) 3 Bi 2 I 9 perovskite based on a two-step deposition method: lead-free, highly stable, and with enhanced photovoltaic performance [J]. ChemElectroChem , 2019 , 6 ( 4 ): 1192 - 1198 . doi: 10.1002/celc.201801322 http://dx.doi.org/10.1002/celc.201801322
SINGH A , BOOPATHI K M , MOHAPATRA A , et al . Photovoltaic performance of vapor-assisted solution-processed layer polymorph of Cs 3 Sb 2 I 9 [J]. ACS Appl. Mater. Interfaces , 2018 , 10 ( 3 ): 2566 - 2573 . doi: 10.1021/acsami.7b16349 http://dx.doi.org/10.1021/acsami.7b16349
LIU X , WANG Y B , XIE F X , et al . Improving the performance of inverted formamidinium tin iodide perovskite solar cells by reducing the energy-level mismatch [J]. ACS Energy Lett. , 2018 , 3 ( 5 ): 1116 - 1121 . doi: 10.1021/acsenergylett.8b00383 http://dx.doi.org/10.1021/acsenergylett.8b00383
LIAO W Q , ZHAO D W , YU Y , et al . Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide [J]. J. Am. Chem. Soc. , 2016 , 138 ( 38 ): 12360 - 12363 . doi: 10.1021/jacs.6b08337 http://dx.doi.org/10.1021/jacs.6b08337
MENG Y Y , GUAN X , WENG Y L , et al . Bi-functional phosphine oxide passivator for efficient near-infrared Sn-based perovskite light-emitting diodes with ultra-low efficiency roll-off [J]. Adv. Funct. Mater. , 2024 , 34 ( 13 ): 2310530 . doi: 10.1002/adfm.202310530 http://dx.doi.org/10.1002/adfm.202310530
ZHAO D W , YU Y , WANG C L , et al . Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells [J]. Nat. Energy , 2017 , 2 ( 4 ): 17018 . doi: 10.1038/nenergy.2017.18 http://dx.doi.org/10.1038/nenergy.2017.18
ZHOU J , FU S Q , ZHOU S , et al . Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells [J]. Nat. Commun. , 2024 , 15 ( 1 ): 2324 . doi: 10.1038/s41467-024-46679-w http://dx.doi.org/10.1038/s41467-024-46679-w
BORRIELLO I , CANTELE G , NINNO D . Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides [J]. Phys. Rev. B , 2008 , 77 ( 23 ): 235214 . doi: 10.1103/physrevb.77.235214 http://dx.doi.org/10.1103/physrevb.77.235214
RACCUGLIA P , ELBERT K C , ADLER P D F , et al . Machine-learning-assisted materials discovery using failed experiments [J]. Nature , 2016 , 533 ( 7601 ): 73 - 76 . doi: 10.1038/nature17439 http://dx.doi.org/10.1038/nature17439
SUN Q D , YIN W J . Thermodynamic stability trend of cubic perovskites [J]. J. Am. Chem. Soc. , 2017 , 139 ( 42 ): 14905 - 14908 . doi: 10.1021/jacs.7b09379 http://dx.doi.org/10.1021/jacs.7b09379
ALI R , HOU G J , ZHU Z G , et al . Stable mixed group Ⅱ (Ca, Sr) and XIV (Ge, Sn) lead-free perovskite solar cells [J]. J. Mater. Chem. A , 2018 , 6 ( 19 ): 9220 - 9227 . doi: 10.1039/c8ta01490f http://dx.doi.org/10.1039/c8ta01490f
CHO H , KIM Y H , WOLF C , et al . Improving the stability of metal halide perovskite materials and light-emitting diodes [J]. Adv. Mater. , 2018 , 30 ( 42 ): 1704587 . doi: 10.1002/adma.201704587 http://dx.doi.org/10.1002/adma.201704587
JU M G , CHEN M , ZHOU Y Y , et al . Toward eco-friendly and stable perovskite materials for photovoltaics [J]. Joule , 2018 , 2 ( 7 ): 1231 - 1241 . doi: 10.1016/j.joule.2018.04.026 http://dx.doi.org/10.1016/j.joule.2018.04.026
KE W J , STOUMPOS C C , SPANOPOULOS I , et al . Efficient lead-free solar cells based on hollow {en}MASnI 3 perovskites [J]. J. Am. Chem. Soc. , 2017 , 139 ( 41 ): 14800 - 14806 . doi: 10.1021/jacs.7b09018 http://dx.doi.org/10.1021/jacs.7b09018
RAY D , CLARK C , PHAM H Q , et al . Computational study of structural and electronic properties of lead-free Cs M I 3 perovskites ( M = Ge, Sn, Pb, Mg, Ca , Sr, and Ba) [J]. J. Phys. Chem. C , 2018 , 122 ( 14 ): 7838 - 7848 . doi: 10.1021/acs.jpcc.8b00226 http://dx.doi.org/10.1021/acs.jpcc.8b00226
XIE G , XU L , SUN L , et al . Insight into the reaction mechanism of water, oxygen and nitrogen molecules on a tin iodine perovskite surface [J]. J. Mater. Chem. A , 2019 , 7 ( 10 ): 5779 - 5793 . doi: 10.1039/c8ta11705e http://dx.doi.org/10.1039/c8ta11705e
FAN J D , LIU C , LI H L , et al . Molecular self-assembly fabrication and carrier dynamics of stable and efficient CH 3 NH 3 Pb (1- x ) Sn x I 3 perovskite solar cells [J]. ChemSusChem , 2017 , 10 ( 19 ): 3839 - 3845 . doi: 10.1002/cssc.201700880 http://dx.doi.org/10.1002/cssc.201700880
LI Y L , SUN W H , YAN W B , et al . 50% Sn-based planar perovskite solar cell with power conversion efficiency up to 13.6% [J]. Adv. Energy Mater. , 2016 , 6 ( 24 ): 1601353 . doi: 10.1002/aenm.201601353 http://dx.doi.org/10.1002/aenm.201601353
YOKOYAMA T , SONG T B , CAO D H , et al . The origin of lower hole carrier concentration in methylammonium tin halide films grown by a vapor-assisted solution process [J]. ACS Energy Lett. , 2017 , 2 ( 1 ): 22 - 28 . doi: 10.1021/acsenergylett.6b00513 http://dx.doi.org/10.1021/acsenergylett.6b00513
FENG J , XIAO B , WAN C L , et al . Electronic structure, mechanical properties and thermal conductivity of Ln 2 Zr 2 O 7 ( Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore [J]. Acta Mater. , 2011 , 59 ( 4 ): 1742 - 1760 . doi: 10.1016/j.actamat.2010.11.041 http://dx.doi.org/10.1016/j.actamat.2010.11.041
FENG J . Mechanical properties of hybrid organic-inorganic CH 3 NH 3 BX 3 ( B =Sn, Pb; X =Br, I) perovskites for solar cell absorbers [J]. APL Mater. , 2014 , 2 ( 8 ): 081801 . doi: 10.1063/1.4885256 http://dx.doi.org/10.1063/1.4885256
HE M , XU Z H , ZHAO C , et al . Sn-based self-powered ultrafast perovskite photodetectors with highly crystalline order for flexible imaging applications [J]. Adv. Funct. Mater. , 2023 , 33 ( 24 ): 2300282 . doi: 10.1002/adfm.202300282 http://dx.doi.org/10.1002/adfm.202300282
LU J X , GUAN X , LI Y Q , et al . Dendritic CsSnI 3 for efficient and flexible near-infrared perovskite light-emitting diodes [J]. Adv. Mater. , 2021 , 33 ( 44 ): 2104414 . doi: 10.1002/adma.202104414 http://dx.doi.org/10.1002/adma.202104414
GAO W Y , RAN C X , LI J R , et al . Robust stability of efficient lead-free formamidinium tin iodide perovskite solar cells realized by structural regulation [J]. J. Phys. Chem. Lett. , 2018 , 9 ( 24 ): 6999 - 7006 . doi: 10.1021/acs.jpclett.8b03194 http://dx.doi.org/10.1021/acs.jpclett.8b03194
UMARI P , MOSCONI E , DE ANGELIS F . Relativistic GW calculations on CH 3 NH 3 PbI 3 and CH 3 NH 3 SnI 3 perovskites for solar cell applications [J]. Sci. Rep. , 2014 , 4 ( 1 ): 4467 . doi: 10.1038/srep04467 http://dx.doi.org/10.1038/srep04467
BERNAL C , YANG K S . First-principles hybrid functional study of the organic-inorganic perovskites CH 3 NH 3 SnBr 3 and CH 3 NH 3 SnI 3 [J]. J. Phys. Chem. C , 2014 , 118 ( 42 ): 24383 - 24388 . doi: 10.1021/jp509358f http://dx.doi.org/10.1021/jp509358f
GOYAL A , MCKECHNIE S , PASHOV D , et al . Origin of pronounced nonlinear band gap behavior in lead-tin hybrid perovskite alloys [J]. Chem. Mater. , 2018 , 30 ( 11 ): 3920 - 3928 . doi: 10.1021/acs.chemmater.8b01695 http://dx.doi.org/10.1021/acs.chemmater.8b01695
PITARO M , TEKELENBURG E K , SHAO S Y , et al . Tin halide perovskites: from fundamental properties to solar cells [J]. Adv. Mater. , 2022 , 34 ( 1 ): 2105844 . doi: 10.1002/adma.202105844 http://dx.doi.org/10.1002/adma.202105844
MA Z Q , PAN H , WONG P K . A first-principles study on the structural and electronic properties of Sn-based organic-inorganic halide perovskites [J]. J. Electron. Mater. , 2016 , 45 ( 11 ): 5956 - 5966 . doi: 10.1007/s11664-016-4822-9 http://dx.doi.org/10.1007/s11664-016-4822-9
SHI T T , ZHANG H S , MENG W W , et al . Effects of organic cations on the defect physics of tin halide perovskites [J]. J. Mater. Chem. A , 2017 , 5 ( 29 ): 15124 - 15129 . doi: 10.1039/c7ta02662e http://dx.doi.org/10.1039/c7ta02662e
LI Y S , WANG D D , YANG Y G , et al . Stable inorganic colloidal tin and tin-lead perovskite nanocrystals with ultralong carrier lifetime via Sn(IV) control [J]. J. Am. Chem. Soc. , 2024 , 146 ( 5 ): 3094 - 3101 .
LIU Q , YIN J , ZHANG B B , et al . Theory-guided synthesis of highly luminescent colloidal cesium tin halide perovskite nanocrystals [J]. J. Am. Chem. Soc. , 2021 , 143 ( 14 ): 5470 - 5480 . doi: 10.1021/jacs.1c01049 http://dx.doi.org/10.1021/jacs.1c01049
JELLICOE T C , RICHTER J M , GLASS H F J , et al . Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals [J]. J. Am. Chem. Soc. , 2016 , 138 ( 9 ): 2941 - 2944 . doi: 10.1021/jacs.5b13470 http://dx.doi.org/10.1021/jacs.5b13470
SUN J , YANG J , LEE J I , et al . Lead-free perovskite nanocrystals for light-emitting devices [J]. J. Phys. Chem. Lett. , 2018 , 9 ( 7 ): 1573 - 1583 . doi: 10.1021/acs.jpclett.8b00301 http://dx.doi.org/10.1021/acs.jpclett.8b00301
ZHANG F , ZHONG H Z , CHEN C , et al . Brightly luminescent and color-tunable colloidal CH 3 NH 3 Pb X 3 ( X =Br, I, Cl) quantum dots: potential alternatives for display technology [J]. ACS Nano , 2015 , 9 ( 4 ): 4533 - 4542 . doi: 10.1021/acsnano.5b01154 http://dx.doi.org/10.1021/acsnano.5b01154
YAO F , PENG J L , LI R M , et al . Room-temperature liquid diffused separation induced crystallization for high-quality perovskite single crystals [J]. Nat. Commun. , 2020 , 11 ( 1 ): 1194 . doi: 10.1038/s41467-020-15037-x http://dx.doi.org/10.1038/s41467-020-15037-x
LI P W , LIU X L , ZHANG Y Q , et al . Low-dimensional dion-jacobson-phase lead-free perovskites for high-performance photovoltaics with improved stability [J]. Angew. Chem. Int. Ed. , 2020 , 59 ( 17 ): 6909 - 6914 . doi: 10.1002/anie.202000460 http://dx.doi.org/10.1002/anie.202000460
HAN C C , WEI Q , JIANG X Y , et al . Large-size and polarization-sensitive two-dimensional sn perovskite single crystals [J]. ACS Mater. Lett. , 2022 , 4 ( 5 ): 987 - 994 . doi: 10.1021/acsmaterialslett.2c00163 http://dx.doi.org/10.1021/acsmaterialslett.2c00163
MAO W , XIE W Q , LI P P , et al . Double relaxation emission of Sn 2+ activator in tin fluorophosphate glass for optoelectronic device applications [J]. Chem. Eng. J. , 2020 , 399 : 125270 . doi: 10.1016/j.cej.2020.125270 http://dx.doi.org/10.1016/j.cej.2020.125270
BOIX P P , AGARWALA S , KOH T M , et al . Perovskite solar cells: beyond methylammonium lead iodide [J]. J. Phys. Chem. Lett. , 2015 , 6 ( 5 ): 898 - 907 . doi: 10.1021/jz502547f http://dx.doi.org/10.1021/jz502547f
FENG J , XIAO B . Crystal structures, optical properties, and effective mass tensors of CH 3 NH 3 Pb X 3 ( X = I and Br) phases predicted from HSEo6 [J]. J. Phys. Chem. Lett. , 2014 , 5 ( 7 ): 1278 - 1282 . doi: 10.1021/jz500480m http://dx.doi.org/10.1021/jz500480m
臧子豪 , 李晗升 , 姜显园 , 等 . 锡钙钛矿太阳能电池的进展与展望 [J]. 物理化学学报 , 2021 , 37 ( 4 ): 2007090 .
ZANG Z H , LI H S , JIANG X Y , et al . Progress and perspective of tin perovskite solar cells [J]. Acta Phys. -Chim. Sinica , 2021 , 37 ( 4 ): 2007090 . (in Chinese)
HUANG L Y , LAMBRECHT W R L . Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl 3 , CsSnBr 3 and CsSnI 3 [J]. Phys. Rev. B , 2013 , 88 ( 16 ): 165203 . doi: 10.1103/physrevb.88.165203 http://dx.doi.org/10.1103/physrevb.88.165203
TAO S X , SCHMIDT I , BROCKS G , et al . Absolute energy level positions in tin-and lead-based halide perovskites [J]. Nat. Commun. , 2019 , 10 ( 1 ): 2560 . doi: 10.1038/s41467-019-10468-7 http://dx.doi.org/10.1038/s41467-019-10468-7
LI B H , LONG R Y , XIA Y , et al . All-inorganic perovskite CsSnBr 3 as a thermally stable, free-carrier semiconductor [J]. Angew. Chem. Int. Ed. , 2018 , 57 ( 40 ): 13154 - 13158 . doi: 10.1002/anie.201807674 http://dx.doi.org/10.1002/anie.201807674
XU P , CHEN S Y , XIANG H J , et al . Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI 3 [J]. Chem. Mater. , 2014 , 26 ( 20 ): 6068 - 6072 . doi: 10.1021/cm503122j http://dx.doi.org/10.1021/cm503122j
KUBICKI D J , PROCHOWICZ D , HOFSTETTER A , et al . Cation dynamics in mixed-cation (MA) x (FA) 1- x PbI 3 hybrid perovskites from solid-State NMR [J]. J. Am. Chem. Soc. , 2017 , 139 ( 29 ): 10055 - 10061 . doi: 10.1021/jacs.7b04930 http://dx.doi.org/10.1021/jacs.7b04930
ZHOU C K , LIN H R , TIAN Y , et al . Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency [J]. Chem. Sci. , 2018 , 9 ( 3 ): 586 - 593 . doi: 10.1039/c7sc04539e http://dx.doi.org/10.1039/c7sc04539e
JU D X , DANG Y Y , ZHU Z L , et al . Tunable band gap and long carrier recombination lifetime of stable mixed CH 3 NH 3 Pb x Sn 1- x Br 3 single crystals [J]. Chem. Mater. , 2018 , 30 ( 5 ): 1556 - 1565 .
WU J , WANG X , XU Y B , et al . Perovskite single crystals with tin-lead gradient for improved ionization radiation detection [J]. APL Mater. , 2023 , 11 ( 10 ): 101130 . doi: 10.1063/5.0167107 http://dx.doi.org/10.1063/5.0167107
MA L , HAO F , STOUMPOS C C , et al . Carrier diffusion lengths of over 500 nm in lead-free perovskite CH 3 NH 3 SnI 3 films [J]. J. Am. Chem. Soc. , 2016 , 138 ( 44 ): 14750 - 14755 . doi: 10.1021/jacs.6b09257 http://dx.doi.org/10.1021/jacs.6b09257
LIN K B , XING J , QUAN L N , et al . Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent [J]. Nature , 2018 , 562 ( 7726 ): 245 - 248 . doi: 10.1038/s41586-018-0575-3 http://dx.doi.org/10.1038/s41586-018-0575-3
CHIBA T , HAYASHI Y , EBE H , et al . Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices [J]. Nat. Photonics , 2018 , 12 ( 11 ): 681 - 687 . doi: 10.1038/s41566-018-0260-y http://dx.doi.org/10.1038/s41566-018-0260-y
CAO Y , WANG N N , TIAN H , et al . Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures [J]. Nature , 2018 , 562 ( 7726 ): 249 - 253 . doi: 10.1038/s41586-018-0576-2 http://dx.doi.org/10.1038/s41586-018-0576-2
HONG W L , HUANG Y C , CHANG C Y , et al . Efficient low-temperature solution-processed lead-free perovskite infrared light-emitting diodes [J]. Adv. Mater. , 2016 , 28 ( 36 ): 8029 - 8036 . doi: 10.1002/adma.201601024 http://dx.doi.org/10.1002/adma.201601024
LAI M L , TAY T Y S , SADHANALA A , et al . Tunable near-infrared luminescence in tin halide perovskite devices [J]. J. Phys. Chem. Lett. , 2016 , 7 ( 14 ): 2653 - 2658 . doi: 10.1021/acs.jpclett.6b01047 http://dx.doi.org/10.1021/acs.jpclett.6b01047
YU J C , KONG J T , HAO W , et al . Broadband extrinsic self-trapped exciton emission in sn-doped 2D lead-halide perovskites [J]. Adv. Mater. , 2019 , 31 ( 7 ): 1806385 . doi: 10.1002/adma.201806385 http://dx.doi.org/10.1002/adma.201806385
LIN T W , SU C , LIN C C . Phase transition and energy transfer of lead-free Cs 2 SnCl 6 perovskite nanocrystals by controlling the precursors and doping manganese ions [J]. J. Inf. Disp. , 2019 , 20 ( 4 ): 209 - 216 . doi: 10.1080/15980316.2019.1655493 http://dx.doi.org/10.1080/15980316.2019.1655493
LAI C F , CHANG Y C , TIEN Y C . Stable lead-free cesium tin halide double-perovskite nanocrystals embedded in polydimethylsiloxane for candlelight light-emitting diodes [J]. ACS Appl. Nano Mater. , 2021 , 4 ( 2 ): 1924 - 1931 . doi: 10.1021/acsanm.0c03273 http://dx.doi.org/10.1021/acsanm.0c03273
KONG L M , SUN Y Q , ZHAO B , et al . Fabrication of red-emitting perovskite LEDs by stabilizing their octahedral structure [J]. Nature , 2024 , 631 ( 8019 ): 73 - 79 . doi: 10.1038/s41586-024-07531-9 http://dx.doi.org/10.1038/s41586-024-07531-9
MIN H , WANG N N , CHEN N N , et al . Spin coating epitaxial heterodimensional tin perovskites for light-emitting diodes [J]. Nature , 2024 , 19 ( 5 ): 632 - 637 . doi: 10.1038/s41565-023-01588-9 http://dx.doi.org/10.1038/s41565-023-01588-9
刘一鸣 , 陈永华 , 黄维 . 柔性钙钛矿发光二极管研究进展 [J]. 光学学报 , 2023 , 43 ( 21 ): 2100001 . doi: 10.3788/AOS230900 http://dx.doi.org/10.3788/AOS230900
LIU Y M , CHEN Y H , HUANG W . Progress on flexible perovskite light-emitting diodes [J]. Acta Opt. Sinica , 2023 , 43 ( 21 ): 2100001 . (in Chinese) . doi: 10.3788/AOS230900 http://dx.doi.org/10.3788/AOS230900
韩冰 , 庆轶朝 , 周志明 , 等 . 非铅金属卤化物类钙钛矿发光材料研究进展 [J]. 发光学报 , 2023 , 44 ( 8 ): 1344 - 1368 . doi: 10.37188/CJL.20230058 http://dx.doi.org/10.37188/CJL.20230058
HAN B , QING Y Z , ZHOU Z M , et al . Recent progress of lead-free metal halide perovskite variant luminescent materials [J]. Chin. J. Lumin. , 2023 , 44 ( 8 ): 1344 - 1368 . (in Chinese) . doi: 10.37188/CJL.20230058 http://dx.doi.org/10.37188/CJL.20230058
BRUNETTI B , CAVALLO C , CICCIOLI A , et al . On the thermal and thermodynamic (in)stability of methylammonium lead halide perovskites [J]. Sci. Rep. , 2016 , 6 ( 1 ): 31896 . doi: 10.1038/srep31896 http://dx.doi.org/10.1038/srep31896
XING G C , KUMAR M H , CHONG W K , et al . Solution-processed tin-based perovskite for near-infrared lasing [J]. Adv. Mater. , 2016 , 28 ( 37 ): 8191 - 8196 . doi: 10.1002/adma.201601418 http://dx.doi.org/10.1002/adma.201601418
LEIJTENS T , PRASANNA R , GOLD-PARKER A , et al . Mechanism of tin oxidation and stabilization by lead substitution in tin halide perovskites [J]. ACS Energy Lett. , 2017 , 2 ( 9 ): 2159 - 2165 . doi: 10.1021/acsenergylett.7b00636 http://dx.doi.org/10.1021/acsenergylett.7b00636
0
Views
103
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution