图1 (a)传统的三能级激光系统产生激光过程示意图[
Received:15 June 2022,
Revised:30 June 2022,
Published:05 December 2022
Scan QR Code
Cite this article
Micro-lasers have wide application prospects in optical communication, holographic technology, biomedical imaging and other fields. Surface plasmon polariton(SPP) propagates along the metal surface, which can be used to fabricate low-threshold nanolasers that break the diffraction limit.. They not only have the characteristic of small size, but also can induce the Purcell effect, so that the spontaneous emission efficiency can be significantly enhanced. In recent years, SPP lasers based on metal-insulator-semiconductor(MIS) waveguide structures have attracted much attention because of their ability of extremely large mode constraint. In this paper, SPP lasers based on MIS waveguide structures will be reviewed. Firstly, the basic mechanism of SPP laser is introduced, and the working principles of nanoplatelet type and nanowire type SPP lasers based on MIS waveguides are introduced respectively. Then, according to different gain medium materials, this paper introduces the research progress of SPP MIS waveguide lasers whose gain media are Ⅱ-Ⅵ semiconductor, Ⅲ-Ⅴ semiconductor and perovskite respectively. Finally, the thesis is summarized, and the future development and challenges of SPP MIS waveguide lasers are prospected.
激光的单色性好、强度高、方向性好等特点使其在工业、医疗、信息、军事等领域得到了广泛应用[
2009年,Hill等[
2020年,Zhi等从增益介质、金属种类和器件结构三方面对SPP半导体纳米激光器进行了对比总结[
目前,人们普遍认为SPP激光器的产生是由于光学增益材料中的激子和SPP发生了耦合[
图1 (a)传统的三能级激光系统产生激光过程示意图[
Fig.1 (a)Schematic diagram of laser generation process in a conventional three-level laser system[
基于MIS波导结构的SPP激光器包括三层:位于上层的半导体层和位于下层的金属层,以及位于金属层和半导体层之间的绝缘材料层,如
图2 MIS波导结构表面等离激元激光器截面图及基本原理示意图
Fig.2 Cross-section view of MIS waveguide based surface plasmon polariton lasers and the schematic diagram of their basic principle
基于MIS波导结构的SPP激光器根据增益介质的形状不同,主要分为纳米片和纳米线两类。针对三维(3D)纳米片与纳米线结构的仿真建模,可以采用两步等效模型法进行,即分解为一维(1D)模型与二维(2D)模型的组合,依次进行本征模式的求解。该方法在大大减小了仿真计算量的同时,也有助于依据共振原理来提出优化的设计方案。接下来,本文将从波导理论出发,对纳米片MIS波导和纳米线MIS波导的共振原理给出分析与讨论。
对于纳米片MIS波导结构,可将其等效成一个1D MIS波导结构和一个2D回音壁共振腔结构的组合,如
图3 纳米片MIS波导结构示意图(a)及其两步等效模型((b)~(c))。 (b)第一步等效模型:1D MIS波导;(c)第二步等效模型:2D回音壁共振腔。 (b)图中曲线展示了SPP间隙模的磁场分量(|Hz|2)与电场分量(|Ey|2)的强度分布示意图。
Fig.3 Schematic diagram of the nanoplatelet MIS waveguide(a) and its two-step equivalent models((b)-(c)). (b)The first step equivalent model: 1D MIS waveguide. (c)The second step equivalent model: 2D whispering gallery resonator. The curve in (b) represents the distribution of magnetic field |Hz|2 and electric field |Ey|2 for the SPP gap mode.
1D MIS波导结构是由金属、绝缘间隙层、半导体介质层(仿真时只需考虑折射率的实部,因其虚部可借助增益获得补偿)、空气包覆层构成的一个四层膜系统,如
通过仿真得到1D MIS波导所支撑的杂化SPP间隙模在不同波长下的等效折射率neff之后,可进一步依据纳米片的水平剖面结构对其进行二维建模。常见的纳米片水平剖面呈三角形、四边形、六边形、圆形等形式。水平传播的SPP间隙模可在这些几何结构的内壁发生全内反射,特定的波长下发生相长干涉,使得光场被严格地限制在纳米腔中,获得了稳定模式,这类模式统称为回音壁模式(WGM)[
接下来,本文以边长为a的三角形腔为例,简要说明WGM模式的工作原理[
图4 三角形腔内传播模式原理分解图[
Fig.4 Decomposition diagram of modes propagating in a triangular cavity[
当半导体纳米线的端面是规则的四边形时,对纳米线MIS波导的建模可以使用与上述纳米片MIS结构波导完全相似的方法。首先,求解1D MIS波导所支撑的SPP波导模式在不同波长下的等效折射率,再将其导入到1D F-P共振腔结构中进行本征模式的求解。然而,当纳米线的端面不是四边形时,需对其建模方法做出调整。此时,需要先求出2D MIS波导所支撑的SPP波导模式在不同波长下的等效折射率,再将其导入到1D F-P共振腔结构中进行本征模式的求解。当然,该方法同样也适用于端面为四边形的半导体纳米线构成的MIS波导。
本文以如
图5 纳米线MIS波导结构示意图(a)及其两步等效模型((b)~(c)),其纳米线端面以圆形为例。 (b)第一步等效模型:2D MIS波导;(c)第二步等效模型:FP共振腔。 (b)图中给了所支撑变形SPP间隙模式的电场强度分布示意图(|Ey|2);(c)图中曲线展示了FP共振腔不同级次驻波的强度分布示意图。
Fig.5 Schematic diagram of the nanowire MIS waveguide(a) and its two-step equivalent models((b)-(c)). (b)The first step equivalent model: 2D MIS waveguide. (c)The second step equivalent model: F-P resonant cavity. The map in (b) represents the distribution of electric field (|Ey|2) for the distorted SPP gap mode. The curve in (c) represents the distribution of different orders of standing waves in the F-P resonator.
数值仿真得到2D MIS波导所支撑的变形SPP间隙模在不同波长下的等效折射率neff之后,可进一步对1D F-P共振腔结构进行建模。
目前,已经报道的SPP MIS波导激光器所使用的增益介质包括Ⅱ-Ⅵ半导体、Ⅲ-Ⅴ半导体以及钙钛矿等。Ⅱ-Ⅵ半导体和Ⅲ-Ⅴ半导体因其宽禁带、波长可调特性成为最早作为SPP MIS波导激光器的增益介质材料[
用于SPP MIS波导激光器的Ⅱ-Ⅵ半导体主要包括CdS、CdSe、ZnO,这些材料具有覆盖可见光波段到紫外光波段的禁带宽度、直接跃迁的能带结构等特点[
首先,介绍最早出现的以CdS为增益介质的MIS结构激光器。2009年,美国加州大学伯克利分校Zhang等报道了一种CdS基纳米线SPP MIS波导激光器[
图6 (a)~(b)基于CdS纳米线/SiO2/Ag SPP激光结构示意图及激光光谱[
Fig.6 (a)-(b)Schematic diagram of SPP laser and laser spectra based on CdS NW- SiO2-Ag[
接下来,介绍以ZnO为增益介质的MIS结构激光器。2014年,英国帝国理工学院Oulton等报道了一种ZnO基纳米线SPP MIS波导激光器[
用于SPP MIS波导激光器的Ⅲ-Ⅴ半导体主要包括GaN、InGaN、AlGaN、GaAs/AlGaAs、InGaAsP,这些材料具有波长可调、禁带宽、热稳定性好等性能[
Ⅲ-Ⅴ半导体材料均以纳米线的形式充当SPP MIS波导激光器的增益介质。2012年,Lu等报道了一种以InGaN为核、GaN为壳(简称为InGaN@GaN)的六边形纳米线SPP MIS波导激光器[
图7 (a)~(b) 基于InxGa1-xN@GaN纳米线/Al2O3/Ag SPP激光结构示意图及激光光谱[
Fig.7 (a)-(b)Schematic of SPP laser and laser spectra based on InxGa1-xN@GaN NW/SiO2/Ag[
上述Ⅱ-Ⅵ、Ⅲ-Ⅴ半导体材料均是通过气相沉积法制备得到的,该工艺相对复杂、成本较高。而钙钛矿材料可通过溶液法制备,成本相对较低[
首先,介绍以MAPbX3为增益介质的SPP MIS波导激光器。2012年,Yu等报道了一种MAPbI3基纳米线SPP MIS波导激光器[
图8 (a)~(b)基于MAPbI3/SiO2/Au SPP激光结构示意图及激光光谱[
Fig.8 (a)-(b)Schematic of SPP laser and laser spectra based on MAPbI3/SiO2/Au[
现阶段,以CsPbX3(X为I、Br、Cl)为增益介质的SPP MIS波导激光器均是CsPbBr3。2018年,Wu等报道了一种CsPbBr3基纳米线SPP MIS波导激光器[
增益材料 | 绝缘介质/金属 | 波长/nm | 激光器阈值 | 测试温度 | 模式体积/面积/长度 | 参考文献 |
---|---|---|---|---|---|---|
CdS NW | MgF2/Ag | 489 | 50 MW/cm2 | 10 K | (λ2)/400 |
[ |
CdS NP | MgF2/Ag | 495.5 | 3 074 MW/cm2 | R T | λ/20 |
[ |
CdS NW | SiO2/Ag | 400 | 110 μJ/cm2 | 77 K |
[ | |
ZnO NW | LiF/Ag | 355 | 200 μJ/cm2 | RT | — |
[ |
ZnO NW | Al2O3/Al | 355 | 25.5 μW | RT | — |
[ |
ZnO NW | (石墨烯)Al2O3/Ag | 355 | 0.84 μW | RT | — |
[ |
ZnO NW | (石墨烯)Al2O3/Al | 355 | 48 μW | RT | — |
[ |
InGaN@GaN NW | SiO2/Ag | 405 | 2.7 KW/cm2 | 7 K | 0.03(λ3) |
[ |
InxGa1-xN@GaN NW | Al2O3/Ag | 405 | 10 W/cm2 | RT |
[ | |
GaN NW | SiO2/Al | 375 | 3.5 MW/cm2 | RT | (λ2)/68 |
[ |
InGaN NW | SiO2/Ag | 517 | 8 kW/cm2 | RT | — |
[ |
AlGaN NW | SiO2⁃Al | 280 | 13 kW/cm2 | RT | — |
[ |
MAPbI3 NW | MgF2/Ag | 790 | 13.5 μJ/cm2 | RT | — |
[ |
MAPbI3 NP | SiO2/Au | 780 | 59.2 μJ/cm2 | RT | 0.406 μm2 |
[ |
MAPbI3 NW | SiO2/Ag | 779 | 41.53 μJ/cm2 | RT | — |
[ |
MAPbBr3 NW | MgF2/Ag | 540 | 300 μJ/cm2 | RT | — |
[ |
MAPbBr3 NP | Al2O3/TiN | 560 | 10 μJ/cm2 | RT | 0.06(λ3) |
[ |
CsPbBr3 NP | MgF2/Ag | 520 | 26 μJ/cm2 | RT | λ/100 |
[ |
CsPbBr3 NP | SiO2/Ag | 520 | 0.138 μW | RT | — |
[ |
CsPbBr3 NW | SiO2/Ag | 515 | 33 μJ/cm2 | RT | — |
[ |
综上所述,SPP MIS波导激光器绝缘层内的杂化SPP间隙模具有强模式约束能力,有利于实现突破衍射极限,该类激光器具有阈值低、Q值高、Purcell因子高、物理尺寸小等优良性能。而且这些物理量之间存在着一定的内在联系。激光器的阈值越低代表整个系统的损耗越小、越容易实现激射,Purcell因子F可以衡量激光器谐振腔内载流子自发辐射率增加的比例,F值越大,代表着整个激光系统的增益越好,相应的激发阈值也较小。F与品质因子Q和模式体积V满足以下的比例关系:F~Q/V,可以看到Q值较大、V值较小时,F值较大。
尽管SPP MIS波导激光器在突破衍射极限、实现激光器小型化、降低激光器阈值方面取得了显著成果,但是该种激光器在以下几方面也面临着一些新的挑战。 (1)机理:分子中的激子与光子发生强耦合时会形成激子极化激元(Exciton polariton,EP),EP激光的产生不需要粒子数反转,使得其阈值远低于光子模式激光。钙钛矿材料激子束缚能高[
近几年,半导体集成电路发展趋势呈指数型增长,摩尔定律意味着电子器件要朝着微型化的方向发展,SPP MIS波导激光器可突破衍射极限,使得该激光器光源的物理尺寸与电子器件的大小不相上下,因此以纳米激光为光源的芯片光互联技术有助于填补半导体领域的空白。在SPP MIS波导激光器的探索中,更低阈值、更小型化的激光器一直是科学家们不断追求的更高目标。在未来,如何将SPP MIS波导激光器应用在生物传感、信息传输、数据存储等方面,将是科学家们探索的另一个热点和重点。
本文专家审稿意见及作者回复内容的下载地址:http://cjl.lightpublishing.cn/thesisDetails#10.37188/
CJL.20220238.
KIM J E, SONG M K, HAN M S, et al. A study on the application of laser cleaning process in shipbuilding industries using 100 W fiber laser [J]. J. Mech. Sci. Technol., 2021, 35(4): 1421-1427. doi: 10.1007/s12206-021-0113-3 [Baidu Scholar]
GUO L B, ZHANG D, SUN L X, et al. Development in the application of laser-induced breakdown spectroscopy in recent years: a review [J]. Front. Phys., 2021, 16(2): 22500-1-25. [Baidu Scholar]
姚峄林, 张锦秋, 杨培霞, 等. 激光辅助电沉积技术及其在制备功能材料方面的应用 [J]. 材料导报, 2022, 36(3): 20080209-1-9. doi: 10.11896/cldb.20080209 [Baidu Scholar]
YAO Y Y, ZHANG J Q, YANG P X, et al. Laser-assisted electrodeposition technology and its application in the preparation of functional materials [J]. Mater. Rep., 2022, 36(3): 20080209-1-9. (in Chinese). doi: 10.11896/cldb.20080209 [Baidu Scholar]
张滢滢, 郭毅, 沈烈. 激光扫描共聚焦显微技术在高分子科学研究中的应用 [J]. 高分子通报, 2022(1): 78-85. [Baidu Scholar]
ZHANG Y Y, GUO Y, SHEN L. Application of laser scanning confocal microscopy in the study of polymer science [J]. Polym. Bull., 2022(1): 78-85. (in Chinese) [Baidu Scholar]
KRYUKOV A I, TSARAPKIN G Y, ARZAMASOV S G, et al. The application of lasers in otorhinolaryngology [J]. Vestn Otorinolaringol., 2016, 81(6): 62-66. [Baidu Scholar]
LEUTHOLD J, HOESSBACHER C, MUEHLBRANDT S, et al. Plasmonic communications: light on a wire [J]. Opt. Photonics News, 2013, 24(5): 28-35. [Baidu Scholar]
MILLER D A B. Device requirements for optical interconnects to silicon chips [J]. Proc. IEEE, 2009, 97(7): 1166-1185. [Baidu Scholar]
CHO C, ANTRACK T, KROLL M, et al. Electrical pumping of perovskite diodes: toward stimulated emission [J]. Adv. Sci., 2021, 8(17): 2101663-1-9. doi: 10.1002/advs.202101663 [Baidu Scholar]
ZHANG M, BUSCAINO B, WANG C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator [J]. Nature, 2019, 568(7752): 373-377. doi: 10.1038/s41586-019-1008-7 [Baidu Scholar]
KELLEHER B, DILLANE M, VIKTOROV E A. Optical information processing using dual state quantum dot lasers: complexity through simplicity [J]. Light Sci. Appl., 2021, 10(1): 238-1-15. [Baidu Scholar]
ZHONG Y C, TANG B, FEI M, et al. All‐photonic miniature perovskite encoder with a terahertz bandwidth [J]. Laser Photonics Rev., 2020, 14(4): 1900398-1-7. [Baidu Scholar]
JEWELL J L, MCCALL S L, LEE Y H, et al. Optical computing and related microoptic devices [J]. Appl. Opt., 1990, 29(34): 5050-5053. doi: 10.1364/ao.29.005050 [Baidu Scholar]
OZBAY E. Plasmonics: merging photonics and electronics at nanoscale dimensions [J]. Science, 2006, 311(5758): 189-193. doi: 10.1126/science.1114849 [Baidu Scholar]
ZAYATS A V, SMOLYANINOV I I, MARADUDIN A A. Nano-optics of surface plasmon polaritons [J]. Phys. Rep., 2005, 408(3): 131-314. [Baidu Scholar]
童廉明, 徐红星. 表面等离激元——机理、应用与展望 [J]. 物理, 2012, 41(9): 582-588. [Baidu Scholar]
TONG L M, XU H X. Surface plasmons—mechanisms, applications and perspectives [J]. Physics, 2012, 41(9): 582-588. (in Chinese) [Baidu Scholar]
顾本源. 表面等离子体亚波长光学原理和新颖效应 [J]. 物理, 2007, 36(4): 280-287. doi: 10.3321/j.issn:0379-4148.2007.04.004 [Baidu Scholar]
GU B Y. Surface plasmon subwavelength optics: principles and novel effects [J]. Physics, 2007, 36(4): 280-287. (in Chinese). doi: 10.3321/j.issn:0379-4148.2007.04.004 [Baidu Scholar]
陈泳屹, 佟存柱, 秦莉, 等. 表面等离子体激元纳米激光器技术及应用研究进展 [J]. 中国光学, 2012, 5(5): 453-463. doi: 10.3788/CO.20120505.0453 [Baidu Scholar]
CHEN Y Y, TONG C Z, QIN L, et al. Progress in surface plasmon polariton nano-laser technologies and applications [J]. Chin. Opt., 2012, 5(5): 453-463. (in Chinese). doi: 10.3788/CO.20120505.0453 [Baidu Scholar]
CHEN S T, ZHANG C, LEE J, et al. High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers [J]. Adv. Mater., 2017, 29(16): 1604781-1-8. doi: 10.1002/adma.201604781 [Baidu Scholar]
HILL M T, MARELL M, LEONG E S P, et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides [J]. Opt. Express, 2009, 17(13): 11107-11112. [Baidu Scholar]
OULTON R F, SORGER V J, ZENTGRAF T, et al. Plasmon lasers at deep subwavelength scale [J]. Nature, 2009, 461(7264): 629-632. [Baidu Scholar]
YU H C, REN K K, WU Q, et al. Organic-inorganic perovskite plasmonic nanowire lasers with a low threshold and a good thermal stability [J]. Nanoscale, 2016, 8(47): 19536-19540. [Baidu Scholar]
智婷, 陶涛, 刘斌, 等. 表面等离激元半导体纳米激光器 [J]. 中国激光, 2020, 47(7): 0701010-1-17. doi: 10.3788/cjl202047.0701010 [Baidu Scholar]
ZHI T, TAO T, LIU B, et al. Surface plasmon semiconductor nanolaser [J]. Chin. J. Lasers, 2020, 47(7): 0701010-1-17. (in Chinese). doi: 10.3788/cjl202047.0701010 [Baidu Scholar]
SIDIROPOULOS T P H, RÖDER R, GEBURT S, et al. Ultrafast plasmonic nanowire lasers near the surface plasmon frequency [J]. Nat. Phys., 2014, 10(11): 870-876. [Baidu Scholar]
DING K, NING C Z. Metallic subwavelength-cavity semiconductor nanolasers [J]. Light Sci. Appl., 2012, 1(7): e20-1-8. [Baidu Scholar]
ZHOU W, DRIDI M, SUH J Y, et al. Lasing action in strongly coupled plasmonic nanocavity arrays [J]. Nat. Nanotechnol., 2013, 8(7): 506-511. [Baidu Scholar]
CHOU Y H, CHOU B T, CHIANG C K, et al. Ultrastrong mode confinement in ZnO surface plasmon nanolasers [J]. ACS Nano, 2015, 9(4): 3978-3983. [Baidu Scholar]
CHOU Y H, WU Y M, HONG K B, et al. High-operation-temperature plasmonic nanolasers on single-crystalline aluminum [J]. Nano Lett., 2016, 16(5): 3179-3186. [Baidu Scholar]
MA R M, OULTON R F, SORGER V J, et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection [J]. Nat. Mater., 2011, 10(2): 110-113. [Baidu Scholar]
ZHANG Q, LI G Y, LIU X F, et al. A room temperature low-threshold ultraviolet plasmonic nanolaser [J]. Nat. Commun., 2014, 5(1): 4953-1-9. [Baidu Scholar]
HUANG C, SUN W Z, FAN Y B, et al. Formation of lead halide perovskite based plasmonic nanolasers and nanolaser arrays by tailoring the substrate [J]. ACS Nano, 2018, 12(4): 3865-3874. doi: 10.1021/acsnano.8b01206 [Baidu Scholar]
EVANS T J S, SCHLAUS A, FU Y P, et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires [J]. Adv. Opt. Mater., 2018, 6(2): 1700982-1-7. doi: 10.1002/adom.201700982 [Baidu Scholar]
SHANG Q Y, LI M L, ZHAO L Y, et al. Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser [J]. Nano Lett., 2020, 20(9): 6636-6643. doi: 10.1021/acs.nanolett.0c02462 [Baidu Scholar]
GU Z Y, SONG Q H, XIAO S M. Nanowire waveguides and lasers: advances and opportunities in photonic circuits [J]. Front. Chem., 2020, 8: 613504-1-23. [Baidu Scholar]
GRAMOTNEV D K, BOZHEVOLNYI S I, et al. Plasmonics beyond the diffraction limit [J]. Nat. Photonics, 2010, 4(2): 83-91. [Baidu Scholar]
SAMUEL I D W, NAMDAS E B, TURNBULL G A. How to recognize lasing [J]. Nat. Photonics, 2009, 3(10): 546-549. [Baidu Scholar]
ZHELUDEV N I, PROSVIRNIN S L, PAPASIMAKIS N, et al. Lasing spaser [J]. Nat. Photonics, 2008, 2(6): 351-354. [Baidu Scholar]
DAI D X, HE S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement [J]. Opt. Express, 2009, 17(19): 16646-16653. [Baidu Scholar]
OULTON R F, SORGER V J, GENOV D A, et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation [J]. Nat. Photonics, 2008, 2(8): 496-500. [Baidu Scholar]
AVRUTSKY I, SOREF R, BUCHWALD W. Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap [J]. Opt. Express, 2009, 18(1): 348-363. [Baidu Scholar]
VAHALA K J. Optical microcavities [J]. Nature, 2003, 424(6950): 839-846. doi: 10.1038/nature01939 [Baidu Scholar]
杨柳, 庄永勇, 刘阳, 等. 回音壁模式光学谐振腔研究进展 [J]. 大学物理, 2021, 40(5): 41-54. [Baidu Scholar]
YANG L, ZHUANG Y Y, LIU Y, et al. Progress of whispering gallery mode resonator [J]. Coll. Phys., 2021, 40(5): 41-54. (in Chinese) [Baidu Scholar]
HUANG Y Z, GUO W H, WANG Q M. Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator [J]. IEEE J. Quantum Electron., 2001, 37(1): 100-107. [Baidu Scholar]
CHANG H C, KIOSEOGLOU G, LEE E H, et al. Lasing modes in equilateral-triangular laser cavities [J]. Phys. Rev. A, 2000, 62(1): 013816-1-9. [Baidu Scholar]
YUAN Z Y, WU P C, CHEN Y C. Optical resonator enhanced photovoltaics and photocatalysis: fundamental and recent progress [J]. Laser Photonics Rev., 2021, 16(2): 2100202-1-26. [Baidu Scholar]
BERNARDINI F, FIORENTINI V, VANDERBILT D. Spontaneous polarization and piezoelectric constants of Ⅲ⁃Ⅴ nitrides [J]. Phys. Rev. B, 1997, 56(16): R10024-R10027. [Baidu Scholar]
YU E T, DANG X Z, ASBECK P M, et al. Spontaneous and piezoelectric polarization effects in Ⅲ⁃Ⅴ nitride heterostructures [J]. J. Vac. Sci. Technol. B, 1999, 17(4): 1742-1749. [Baidu Scholar]
MONROY E, GOGNEAU N, ENJALBERT F, et al. Molecular-beam epitaxial growth and characterization of quaternary Ⅲ⁃nitride compounds [J]. J. Appl. Phys., 2003, 94(5): 3121-3127. [Baidu Scholar]
张钰, 周欢萍. 有机-无机杂化钙钛矿材料的本征稳定性 [J]. 物理学报, 2019, 68(15): 158804-1-11. doi: 10.7498/aps.68.20190343 [Baidu Scholar]
ZHANG Y, ZHOU H P. Intrinsic stability of organic-inorganic hybrid perovskite [J]. Acta Phys. Sinica, 2019, 68(15): 158804-1-11. (in Chinese). doi: 10.7498/aps.68.20190343 [Baidu Scholar]
练惠旺, 康茹, 陈星中, 等. 全无机钙钛矿CsPbX3热稳定性研究进展 [J]. 发光学报, 2020, 41(8): 926-939. doi: 10.37188/fgxb20204108.0926 [Baidu Scholar]
LIAN H W, KANG R, CHEN X Z, et al. Research progress on thermal stability of all inorganic perovskite CsPbX3 [J]. Chin. J. Lumin., 2020, 41(8): 926-939. (in Chinese). doi: 10.37188/fgxb20204108.0926 [Baidu Scholar]
肖娟, 张浩力. 新型有机-无机杂化钙钛矿发光材料的研究进展 [J]. 物理化学学报, 2016, 32(8): 1894-1912. doi: 10.3866/PKU.WHXB201605034 [Baidu Scholar]
XIAO J, ZHANG H L. Recent progress in organic⁃inorganic hybrid perovskite materials for luminescence applications [J]. Acta Phys.⁃Chim. Sinica, 2016, 32(8): 1894-1912. (in Chinese). doi: 10.3866/PKU.WHXB201605034 [Baidu Scholar]
CHOOPUN S, VISPUTE R D, NOCH W, et al. Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire [J]. Appl. Phys. Lett., 1999, 75(25): 3947-3949. [Baidu Scholar]
MA R M, DAI L, QIN G G. Enhancement-mode metal-semiconductor field-effect transistors based on single n-CdS nanowires [J]. Appl. Phys. Lett., 2007, 90(9): 093109-1-3. [Baidu Scholar]
MA R M, DAI L, HUO H B, et al. High-performance logic circuits constructed on single CdS nanowires [J]. Nano Lett., 2007, 7(11): 3300-3304. [Baidu Scholar]
ZHANG Q, SHANG Q Y, SHI J, et al. Wavelength tunable plasmonic lasers based on intrinsic self-absorption of gain material [J]. ACS Photonics, 2017, 4(11): 2789-2796. [Baidu Scholar]
ZHAO D, LIU W, ZHU G B, et al. Surface plasmons promoted single-mode polariton lasing in a subwavelength ZnO nanowire [J]. Nano Energy, 2020, 78: 105202. [Baidu Scholar]
LI H, LI J H, HONG K B, et al. Plasmonic nanolasers enhanced by hybrid graphene-insulator-metal structures [J]. Nano Lett., 2019, 19(8): 5017-5024. [Baidu Scholar]
LU Y J, KIM J, CHEN H Y, et al. Plasmonic nanolaser using epitaxially grown silver film [J]. Science, 2012, 337(6093): 450-453. [Baidu Scholar]
TAO T, ZHI T, LIU B, et al. Electron-beam-driven Ⅲ-nitride plasmonic nanolasers in the deep-UV and visible region [J]. Small, 2020, 16(1): 1906205-1-8. [Baidu Scholar]
车韬, 李国辉, 冀婷, 等. 有机-无机杂化钙钛矿光电子器件的钝化技术研究进展(续) [J]. 半导体技术, 2019, 44(11): 825-830. [Baidu Scholar]
CHE T, LI G H, JI T, et al. Research progress of passivation technology of organic-inorganic hybrid perovskite optoelectronic devices (continued) [J]. Semicond. Technol., 2019, 44(11): 825-830. (in Chinese) [Baidu Scholar]
韩悦, 李国辉, 梁强兵, 等. 全无机钙钛矿CsPbX3纳米晶的研究进展 [J]. 发光学报, 2020, 41(5): 542-556. doi: 10.3788/fgxb20204105.0542 [Baidu Scholar]
HAN Y, LI G H, LIANG Q B, et al. Advances of all-inorganic perovskite CsPbX3 nanocrystals [J]. Chin. J. Lumin., 2020, 41(5): 542-556. (in Chinese). doi: 10.3788/fgxb20204105.0542 [Baidu Scholar]
汪俊, 周奉献, 李骞, 等. 准二维铅基钙钛矿微纳激光器 [J]. 发光学报, 2022, 43(11):1645-1662. [Baidu Scholar]
WANG J, ZHOU F X, LI Q, et al. Quasi-2D lead halide perovskites for micro- and nanolasers [J]. Chin. J. Lumin., 2022, 43(11):1645-1662.(in Chinese) [Baidu Scholar]
皮慧慧, 李国辉, 周博林, 等. 高效率钙钛矿量子点发光二极管研究进展 [J]. 发光学报, 2021, 42(5): 650-667. doi: 10.37188/CJL.20200406 [Baidu Scholar]
PI H H, LI G H, ZHOU B L, et al. Progress of high-efficiency perovskite quantum dot light-emitting diodes [J]. Chin. J. Lumin., 2021, 42(5): 650-667. (in Chinese). doi: 10.37188/CJL.20200406 [Baidu Scholar]
KIM H, ZHAO L F, PRICE J S, et al. Hybrid perovskite light emitting diodes under intense electrical excitation [J]. Nat. Commun., 2018, 9(1): 4893-1-9. doi: 10.1038/s41467-018-07383-8 [Baidu Scholar]
VELDHUIS S A, BOIX P P, YANTARA N, et al. Perovskite materials for light-emitting diodes and lasers [J]. Adv. Mater., 2016, 28(32): 6804-6834. doi: 10.1002/adma.201600669 [Baidu Scholar]
YAKUNIN S, PROTESESCU L, KRIEG F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites [J]. Nat. Commun., 2015, 6: 8056-1-8. [Baidu Scholar]
ZHU H M, FU Y P, MENG F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors [J]. Nat. Mater., 2015, 14(6): 636-642. doi: 10.1038/nmat4271 [Baidu Scholar]
ZIMMLER M A, BAO J M, CAPASSO F, et al. Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation [J]. Appl. Phys. Lett., 2008, 93(5): 051101-1-3. [Baidu Scholar]
霍成学, 王子明, 李晓明, 等. 低维金属卤化物钙钛矿: 一种微腔激光材料 [J]. 中国激光, 2017, 44(7): 0703008-1-12. [Baidu Scholar]
HUO C X, WANG Z M, LI X M, et al. low-dimensional metal halide perovskites: a kind of microcavity laser materials [J]. Chin. J. Lasers, 2017, 44(7): 0703008-1-12. (in Chinese) [Baidu Scholar]
楼浩然, 叶志镇, 何海平. 铅卤钙钛矿的光稳定性研究进展 [J]. 物理学报, 2019, 68(15): 157102-1-13. doi: 10.7498/aps.68.20190324 [Baidu Scholar]
LOU H R, YE Z Z, HE H P. Recent advances in photo-stability of lead halide perovskites [J]. Acta Phys. Sinica, 2019, 68(15): 157102-1-13. (in Chinese). doi: 10.7498/aps.68.20190324 [Baidu Scholar]
LI G H, CHE T, JI X Q, et al. Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite [J]. Adv. Funct. Mater., 2019, 29(2): 1805553-1-7. doi: 10.1002/adfm.201805553 [Baidu Scholar]
WANG J, JIA X H, GUAN Y L, et al. The electron–hole plasma contributes to both plasmonic and photonic lasing from CH3NH3PbBr3 nanowires at room temperature [J]. Laser Photonics Rev., 2021, 15(6): 2000512-1-6. [Baidu Scholar]
LU Y J, SHEN T L, PENG K N, et al. Upconversion plasmonic lasing from an organolead trihalide perovskite nanocrystal with low threshold [J]. ACS Photonics, 2020, 8(1): 335-342. [Baidu Scholar]
WU Z Y, CHEN J, MI Y, et al. All-inorganic CsPbBr3 nanowire based plasmonic lasers [J]. Adv. Opt. Mater., 2018, 6(22): 1800674-1-8. doi: 10.1002/adom.201800674 [Baidu Scholar]
YANG S, BAO W, LIU X Z, et al. Subwavelength-scale lasing perovskite with ultrahigh Purcell enhancement [J]. Matter, 2021, 4(12): 4042-4050. [Baidu Scholar]
GONG M G, JIANG D, TAO T, et al. Surface plasmon coupling regulated CsPbBr3 perovskite lasers in a metal-insulator-semiconductor structure [J]. RSC Adv., 2021, 11(59): 37218-37224. [Baidu Scholar]
FREIRE-FERNÁNDEZ F, CUERDA J, DASKALAKIS K S, et al. Magnetic on-off switching of a plasmonic laser [J]. Nat. Photonics, 2022, 16(1): 27-32. [Baidu Scholar]
HUANG Z T, YIN C W, HONG Y H, et al. Hybrid plasmonic surface lattice resonance perovskite lasers on silver nanoparticle arrays [J]. Adv. Opt. Mater., 2021, 9(17): 2100299-1-8. [Baidu Scholar]
CHOU Y H, HONG K B, CHANG C T, et al. Ultracompact pseudowedge plasmonic lasers and laser arrays [J]. Nano Lett., 2018, 18(2): 747-753. [Baidu Scholar]
598
Views
1142
Downloads
0
CSCD
Related Articles
Related Author
Related Institution