图1 N-CQDs的制备及检测Co2+示意图
Received:04 August 2021,
Revised:11 August 2021,
Published:01 November 2021
Scan QR Code
Cite this article
Nitrogen-doped carbon quantum dots(N-CQDs) were successfully synthesized using pig bone and ethylenediamine as carbon and nitrogen sources by one-step hydrothermal method. Structure, optical properties and element composition of N-CQDs have been studied by transmission electron microscope(TEM), Fourier transform infrared spectroscopy(FT-IR), X-ray diffractometer patterns(XRD), UV-Vis absorption spectroscopy(UV-Vis) and X-ray photoelectron spectroscopy(XPS) technologies. The synthesized N-CQDs have a high quantum yield(26.4%), an average particle size of 2.34 nm, showing bright blue fluorescence under a 365 nm UV lamp. The study found that Co2+ had a good quenching effect on N-CQDs, so as to establish a new method for rapid detection of Co2+. The fluorescence quenching intensity of N-CQDs has a good linear relationship with the concentration of Co2+ at 0-15 μg/mL and 30-80 μg/mL, the detection limit is 20 μg/L, and the recovery rate of standard addition is 97.26%-109.14%, RSD<3.24%, which can be applied to the determination of Co2+ content in actual water samples.
nitrogen-doped carbon quantum dots;
pig bone;
fluorescence detection;
Co2+
碳量子点(Carbon quantum dots,CQDs)是一类尺寸小于10 nm具有量子限域效应的新型零维碳纳米材料[
钴离子(Co2+)是人体必需的一种微量元素,可以促使红细胞和部分酶的合成、调节酶和辅助因子的催化活性,在人体中起着重要作用[
我国是世界上禽、畜产量最多的国家之一,2018年中国猪肉总产量为5 400万吨,约占全球产量的50%,若以猪骨占猪肉的9%~14%计算[
试剂:猪骨(棒子骨)收集于中国雅安苍坪山农贸市场(将猪骨剔除碎肉洗净后,置于60 ℃烘箱中烘干,然后用粉碎机研磨成粉末状,100目过筛保存备用)。乙二胺、CoCl2、KCl、ZnCl2、BaCl2、MgCl2、NaCl、CdCl2、CaCl2、NiCl2、FeCl3、CuCl2、HgCl2、AlCl3、MnCl2、CrCl3、硝酸溶液均购于成都市科隆化学品有限公司(中国成都)。硫酸奎宁购自迈坤化工有限公司(中国上海)。其他化学药品和溶剂均购自万科试剂有限公司(中国雅安),所有试剂均为分析纯。
仪器:Varioskan Flash全波长扫描式酶标仪(美国赛默飞世尔科技有限公司);Lumina荧光分光光度计(美国赛默飞世尔科技有限公司);NICOLETiS10 型傅里叶变换红外光谱仪(美国赛默飞世尔科技有限公司);TEM-2100透射电子显微镜(日本LJEMOC);Milli-Q Gradient超纯水系统(美国密理博公司);Shimadzu D/Max-2500 X射线衍射仪(日本岛津公司)等。
本实验采用水热法制备绿色生物质猪骨氮掺杂碳量子点。制备方法如下:将骨粉与乙二胺混合在60 mL去离子水中搅拌均匀,然后将混合物转移到100 mL四氟乙烯内胆 Teflon反应釜中,并在烘箱中恒温加热,待反应液冷却得到黄褐色溶液。离心(4 000 r/20 min)后用0.22 μm滤膜过滤除去大颗粒杂质得到N-CQDs溶液,在4 ℃冰箱中避光保存。考察反应温度(160,180,200,220,240 ℃)、反应时间(8,10,12,14,16 h)、骨粉量(4,5,6,7,8 g)和乙二胺量(0.6,0.7,0.8,0.9,1 mL)对N-CQDs荧光强度的影响,确定最佳制备条件。
TEM-2100透射电子显微镜进行形貌特征分析;Lumina荧光分光光度计测量N-CQDs的荧光光谱;NICOLETiS10 型傅里叶变换红外光谱仪测定N-CQDs表面官能团;XRD-6000X射线衍射光谱仪测定XRD 谱图;Shimadzu D/Max-2500 X射线衍射仪测定XPS谱图;MAZ2012马尔文粒度仪测定Zeta电位。
使用硫酸奎宁(在350 nm的0.1 mol/L H2SO4中 QY=54%)为参比物质,分别测试N-CQDs和硫酸奎宁的紫外-可见吸收光谱及荧光光谱,代入公式(1):
(1) |
其中η为量子产率,I表示荧光发射强度,n表示溶剂的折射率,A表示吸光度。下标R和S分别表示已知的荧光标准样品和实验样品[
将制备得到的N-CQDs溶液每隔7 d记录荧光发射光谱,考察N-CQDs储藏时间稳定性。将N-CQDs溶液置于365 nm紫外光下,分别照射0,30,60,90,120,150,180 min,考察N-CQDs光漂白稳定性。用0.5 mol/L的盐酸和氢氧化钠溶液调节N-CQDs溶液的pH值,考察N-CQDs的pH稳定性。在N-CQDs溶液中加入50 μL NaCl溶液,其浓度分别为0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 mol/L,考察N-CQDs的离子稳定性。上述所有测试均是在417 nm激发波长下记录荧光发射光谱,平行测定3次。
在荧光比色皿中,加入1 mL 100倍分散体 N-CQDs 溶液、1 mL PBS(pH=7)以及分别加入浓度为 0.1,0.5,1,2,5,8,10,12,15, 20,25,30,40,50,60,70,80,90,100 μg/mL 的Co2+溶液,混合均匀后20 ℃反应10 min。417 nm激发波长下记录荧光发射光谱,以荧光猝灭率F/F0为指标(F是加入Co2+溶液时的荧光强度,F0是不加入Co2+溶液时的荧光强度)。
在N-CQDs溶液中,分别加入1 mL浓度为100 μg/mL的金属离子水溶液(Co2+、K+、Zn2+、Ba2+、Mg2+、Na+、Cd2+、Ca2+、Ni2+、Fe3+、Cu2+、Hg2+、Al3+、Mn2+、Cr3+),检测存在不同代表性离子的荧光强度,考察其选择性。
在N-CQDs溶液中,加入1 mL浓度为100 μg/mL的Co2+溶液后,再分别加入不同倍数潜在干扰物离子溶液(Co2+、K+、Zn2+、Ba2+、Mg2+、Na+、Cd2+、Ca2+、Ni2+、Fe3+、Cu2+、Hg2+、Al3+、Mn2+、Cr3+ 、H2P 、N
、C
、S
、OH-、Lys、Asp、Cys、Trp、Thr、Gly、Phe)与体系混合,检测存在潜在干扰性离子条件下,体系的荧光强度变化,考察其抗干扰性。上述所有测试均是平行测定3次。
分别以来自实验室的自来水和青衣江(中国雅安)的河水作为实际检测样品,评估N-CQDs检测Co2+的实际适用性。根据HJ/T 91-2002采集样品后,将两种样品都分为两份。一份经0.45 μm微孔滤膜过滤,用硫酸溶液调节水样pH小于2,用于分光光度法检测(HJ 550-2015);另一份经0.22 μm微孔滤膜过滤,用硫酸溶液调节水样pH至中性,用于N-CQDs检测。
为了获得高荧光性能的N-CQDs,考察了水热反应温度、水热反应时间、骨粉量和乙二胺量对N-CQDs荧光强度的影响。由
图1 N-CQDs的制备及检测Co2+示意图
Fig.1 Schematic representation of N-CQDs preparation and detection of Co2+
图2 水热反应温度(a)、水热反应时间(b)、骨粉量(c)、乙二胺量(d)对N-CQDs荧光强度的影响。插图:N-CQDs在紫外暗箱中的图片。
Fig.2 Influence of hydrothermal reaction temperature(a), hydrothermal reaction time(b), bone meal amount(c), ethylenediamine amount(d) on the fluorescence intensity of N-CQDs. Illustration: picture of N-CQDs in a UV dark box.
O和C
C基团不对称拉伸振动的结果[
图3 N-CQDs的TEM图(a)、粒径分布图(b)、XRD谱图(c)、FT-IR谱图(d)。插图:N-CQDs的HRTEM图。
Fig.3 TEM image(a), particle size distribution(b), XRD spectrum(c), FT-IR spectra(d) of N-CQDs. Inset: HRTEM image of N-CQDs.
N-CQDs的光学性质通过紫外-可见吸收光谱和荧光光谱进行分析。 C的π-π*轨道跃迁[
O的n-π*轨道跃迁[
图4 (a)N-CQDs的紫外-可见吸收光谱和荧光光谱,插图:N-CQDs水溶液在可见光(左)和紫外光(365 nm,右)下的照片;(b)不同激发波长下N-CQDs的发射光谱。
Fig.4 (a)UV-Vis absorption spectra and fluorescence spectra of N-CQDs. Inset: photograph of N-CQDs aqueous solution under visible light(left) and ultraviolet light(365 nm, right).(b)Emission spectra of N-CQDs at different excitation wavelengths.
采用XPS分析了N-CQDs表面的化学元素及化学键,如 O/C
N[
C—N、C—N—C、N—H[
O、C—O、C—OH/C—O—C[
图5 (a)N-CQDs的XPS谱图;(b)C1s的高分辨率XPS谱图;(c)N1s的高分辨率谱图;(d)O1s的高分辨率XPS谱图。
Fig.5 XPS of the N-CQDs(a) and C1s(b). N1s(c) and O1s(d) spectra of the CDs.
图6 储藏时间(a)、紫外照射时间(b)、pH(c)、NaCl浓度(d)对N-CQDs荧光强度的影响。
Fig.6 Influence of storage time(a), ultraviolet irradiation time(b), pH(c), NaCl concentration(d) on the fluorescence intensity of N-CQDs.
如
图7 (a)不同金属离子对N-CQDs荧光强度的影响;(b)其他物质存在时Co2+的测定;(c)不同Co2+浓度对N-CQDs荧光强度的影响;(d)F/F0与Co2+浓度在0~100 μg·mL-1的关系曲线(F是加入Co2+溶液时N-CQDs的荧光强度,F0是不加入Co2+溶液时N-CQDs的荧光强度),插图:F/F0与Co2+浓度的线性关系(红色曲线:0~15 μg·mL-1;蓝色曲线:30~80 μg·mL-1);(e)在不同温度下Co2+猝灭的N-CQDs的Stern-Volmer曲线;(f)不存在和存在 Co2+ 时N-CQDs的紫外-可见吸收光谱。
Fig.7 (a)Influence of different metal ions on the fluorescence intensity of N-CQDs. (b)Determination of Co2+ in the presence of other substances. (c)Influence of different Co2+ concentrations on the fluorescence intensity of N-CQDs. (d)Relationship curve between F/F0 and Co2+ concentration(F is the fluorescence intensity of N-CQDs when Co2+ solution is added, and F0 is the fluorescence intensity of N-CQDs when Co2+ solution is not added). Inset: linear relationship between F/F0 and Co2+ concentration(red curve: 0-15 μg·mL-1; blue curve: 30-80 μg·mL-1).(e)Stern-Volmer curves of Co2+ quenched N-CQDs at different temperature.(f)UV-Vis absorption spectra of N-CQDs in the absence and presence of Co2+.
方法 | 材料 | 线性范围 | 检出限 | 参考文献 |
---|---|---|---|---|
荧光 | N-CQDs | 0~15 μg·mL-1, 30~80 μg·mL-1 | 20 μg·L-1(0.34 μmol·L-1) | 本方法 |
比色分析 | 硫化锌量子点 | 10~1 000 mg·L-1 | 10 mg·L-1 |
[ |
荧光 | N-CQDs | 0~90 μmol·L-1 | 0.4 μmol·L-1 |
[ |
荧光 | CQDs | 0.1~30 μmol·L-1 | 0.052 μmol·L-1 |
[ |
荧光 | N-CQDs | 5~30 μmol·L-1 | 0.43 μmol·L-1 |
[ |
荧光 | CQDs | 0~40 μmol·L-1 | 0.45 μmol·L-1 |
[ |
吸光度 | 金纳米粒子 | 1 000~15 000 μmol·L-1 | 14 μmol·L-1 |
[ |
荧光 | N,S-CQDs | 0.08~100 μmol·L-1 | 0.08 μmol·L-1 |
[ |
荧光猝灭是荧光分子的表面基团与猝灭物质发生反应,导致荧光强度降低,通常分为静态猝灭和动态猝灭。静态猝灭的荧光猝灭常数随温度升高而减小,动态猝灭的荧光猝灭常数随温度升高而增大[
(2) |
其中F0是不加入Co2+溶液时N-CQDs的荧光强度,F是加入Co2+溶液时N-CQDs的荧光强度,KSV是Stern-Volmer猝灭常数,C为加入Co2+的浓度,曲线如
选择自来水和河水为实际样品,然后采用加标回收法检测水样中的Co2+,结果如
Sample | Found/(μg·L-1) | Added/ (μg·L-1) | N-CQDs | HJ 550-2015 | ||||
---|---|---|---|---|---|---|---|---|
Total found/(μg·L-1) | Recover/% | RSD/% | Total found/(μg·L-1) | Recover/% | RSD/% | |||
River water | 0 | 20 | 21.83 | 109.14 | 1.63 | 23.41 | 117.05 | 2.32 |
0 | 40 | 39.25 | 98.13 | 3.24 | 44.70 | 111.75 | 5.71 | |
0 | 80 | 77.81 | 97.26 | 3.19 | 78.24 | 97.80 | 4.36 | |
Tap water | 0 | 20 | 19.57 | 97.85 | 1.91 | 19.23 | 96.15 | 4.60 |
0 | 40 | 41.14 | 102.85 | 0.90 | 44.15 | 110.38 | 4.05 | |
0 | 80 | 79.26 | 99.08 | 1.25 | 84.17 | 105.21 | 2.83 |
本文以生物质废弃物猪骨为碳源,通过一步水热法合成了N-CQDs。XPS和FT-IR表征分析表明氮元素成功掺杂到碳量子点的结构中。N-CQDs的平均粒径为2.34 nm,颗粒分散均匀,表现出良好的溶解度、高稳定性和高荧光强度。基于Co2+能够有效猝灭N-CQDs的荧光,建立了一种高灵敏性和选择性的Co2+的检测方法,检测线性范围为0~15 μg/mL和30~80 μg/mL,检出限为20 μg/L,并能够用于实际样品中Co2+的检测,为环境分析提供了一种简单、快速、灵敏的检测Co2+的新方法。
本文专家审稿意见及作者回复内容的下载地址:http://cjl.lightpublishing.cn/thesisDetails#10.37188/CJL.20210260.
TRUFFAULT L, TA M T, DEVERS T, et al. On the curve-fitting of XPS Ce(3d) spectra of cerium oxides by E. Paparazzo, Materials Research Bulletin 46(2011) 323-326[J]. Mater. Res. Bull., 2012, 47(11): 3941-3942. [Baidu Scholar]
WANG C, ZHOU J D, RAN G X, et al. Bi-functional fluorescent polymer dots:a one-step synthesis via controlled hydrothermal treatment and application as probes for the detection of temperature and Fe3+[J]. J. Mater. Chem. C, 2017, 5(2): 434-443. [Baidu Scholar]
ZHANG H J, CHEN Y L, LIANG M J, et al. Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells[J]. Anal. Chem., 2014, 86(19): 9846-9852. [Baidu Scholar]
ZHU X H, ZHAO T B, NIE Z, et al. Nitrogen-doped carbon nanoparticle modulated turn-on fluorescent probes for histidine detection and its imaging in living cells[J]. Nanoscale, 2016, 8(4): 2205-2211. [Baidu Scholar]
AWUAL M R, ISMAEL M, YAITA T. Efficient detection and extraction of cobalt(Ⅱ) from lithium ion batteries and wastewater by novel composite adsorbent[J]. Sens. Actuators B Chem., 2014, 191: 9-18. [Baidu Scholar]
LIAO S, ZHU F W, ZHAO X Y, et al. A reusable P, N-doped carbon quantum dot fluorescent sensor for cobalt ion[J]. Sens. Actuators B Chem., 2018, 260: 156-164. [Baidu Scholar]
STOICA A I, PELTEA M, BAIULESCU G E, et al. Determination of cobalt in pharmaceutical products[J]. J. Pharm. Biomed. Anal., 2004, 36(3): 653-656. [Baidu Scholar]
SIMONSEN L O, HARBAK H, BENNEKOU P. Cobalt metabolism and toxicology—a brief update[J]. Sci. Total Environ., 2012, 432: 210-215. [Baidu Scholar]
TIAN M, ZHANG J Q, LIU Y M, et al. One-pot synthesis of nitrogen-doped carbon dots for highly sensitive determination of cobalt ions and biological imaging[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 252: 119541. [Baidu Scholar]
JING N, TIAN M, WANG Y T, et al. Nitrogen-doped carbon dots synthesized from acrylic acid and ethylenediamine for simple and selective determination of cobalt ions in aqueous media[J]. J. Lumin., 2019, 206: 169-175. [Baidu Scholar]
张崟, 卓勇贤, 张佳敏, 等. 猪骨利用的研究进展[J]. 农产品加工·学刊, 2010(11): 83-86. [Baidu Scholar]
ZHANG Y, ZHUO Y X, ZHANG J M, et al. Researches on application of pig bone[J]. Acad. Periodical Farm Products Process., 2010(11): 83-86. (in Chinese) [Baidu Scholar]
张正伟, 彭可睿, 陈建秋, 等. 生物质基碳量子点的制备及其光谱性质研究[J]. 生物质化学工程, 2014, 48(3): 30-35. [Baidu Scholar]
ZHANG Z W, PENG K R, CHEN J Q, et al. Preparation of carbon quantum dots by biologic matters and its spectrum properties[J]. Bio. Chem. Eng., 2014, 48(3): 30-35. (in Chinese) [Baidu Scholar]
LU M C, DUAN Y X, SONG Y H, et al. Green preparation of versatile nitrogen-doped carbon quantum dots from watermelon juice for cell imaging, detection of Fe3+ ions and cysteine, and optical thermometry[J]. J. Mol. Liq., 2018, 269: 766-774. [Baidu Scholar]
WANG C J, SHI H X, YANG M, et al. Facile synthesis of novel carbon quantum dots from biomass waste for highly sensitive detection of iron ions[J]. Mater. Res. Bull., 2020, 124: 110730-1-8. [Baidu Scholar]
LIN L P, RONG M C, LU S S, et al. A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2, 4, 6-trinitrophenol in aqueous solution[J]. Nanoscale, 2015, 7(5): 1872-1878. [Baidu Scholar]
HSU P C, CHANG H T. Synthesis of high-quality carbon nanodots from hydrophilic compounds:role of functional groups[J]. Chem. Commun., 2012, 48(33): 3984-3986. [Baidu Scholar]
SHEN T Y, JIA P Y, CHEN D S, et al. Hydrothermal synthesis of N-doped carbon quantum dots and their application in ion-detection and cell-imaging[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 248: 119282. [Baidu Scholar]
JOSEPH J, ANAPPARA A A. Ellagic acid-functionalized fluorescent carbon dots for ultrasensitive and selective detection of mercuric ions via quenching[J]. J. Lumin., 2017, 192: 761-766. [Baidu Scholar]
WU Z L, GAO M X, WANG T T, et al. A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots[J]. Nanoscale, 2014, 6(7): 3868-3874. [Baidu Scholar]
SUN D, BAN R, ZHANG P H, et al. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties[J]. Carbon, 2013, 64: 424-434. [Baidu Scholar]
LIU W F, JIA H S, ZHANG J, et al. Preparation of nitrogen-doped carbon quantum dots(NCQDs) and application for non-enzymatic detection of glucose[J]. Microchem. J., 2020, 158: 105187. [Baidu Scholar]
GUO Y M, ZHANG L F, CAO F P, et al. Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+[J]. Sci. Rep., 2016, 6: 35795-1-7. [Baidu Scholar]
QI H J, TENG M, LIU M, et al. Biomass-derived nitrogen-doped carbon quantum dots:highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines[J]. J. Colloid Interface Sci., 2019, 539: 332-341. [Baidu Scholar]
TANG Y, RAO L S, LI Z T, et al. Rapid synthesis of highly photoluminescent nitrogen-doped carbon quantum dots via a microreactor with foamy copper for the detection of Hg2+ ions[J]. Sens. Actuators B Chem., 2018, 258: 637-647. [Baidu Scholar]
LU D, TANG Y P, GAO J W, et al. Concentrated solar irradiation protocols for the efficient synthesis of tri-color emissive carbon dots and photophysical studies[J]. J. Mater. Chem. C, 2018, 6(47): 13013-13022. [Baidu Scholar]
NIU W J, LI Y, ZHU R H, et al. Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging[J]. Sens. Actuators B Chem., 2015, 218: 229-236. [Baidu Scholar]
HU X T, LI Y X, XU Y W, et al. Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk[J]. Food Chem., 2021, 339: 127775. [Baidu Scholar]
LIU W, DIAO H P, CHANG H H, et al. Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging[J]. Sens. Actuators B Chem., 2017, 241: 190-198. [Baidu Scholar]
ZHAO C X, JIAO Y, HU F, et al. Green synthesis of carbon dots from pork and application as nanosensors for uric acid detection[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 190: 360-367. [Baidu Scholar]
RAMEZANI Z, QORBANPOUR M, RAHBAR N. Green synthesis of carbon quantum dots using quince fruit(Cydonia oblonga) powder as carbon precursor:application in cell imaging and As3+ determination[J]. Colloids Surfaces A Physicochem. Eng. Aspects, 2018, 549: 58-66. [Baidu Scholar]
LIU X, YANG Y, LI Q, et al. Portably colorimetric paper sensor based on ZnS quantum dots for semi-quantitative detection of Co2+ through the measurement of grey level[J]. Sens. Actuators B Chem., 2018, 260: 1068-1075. [Baidu Scholar]
LIU X, WEI S G, DIAO Q P, et al. Hydrothermal synthesis of N-doped carbon dots for selective fluorescent sensing and cellular imaging of cobalt(Ⅱ)[J]. Microchim. Acta, 2017, 184(10): 3825-3831. [Baidu Scholar]
TIAN M, LIU Y M, WANG Y T, et al. Facile synthesis of yellow fluorescent carbon dots for highly sensitive sensing of cobalt ions and biological imaging[J]. Anal. Methods, 2019, 11(32): 4077-4083. [Baidu Scholar]
ATCHUDAN R, EDISON T N J I, PERUMAL S, et al. Betel-derived nitrogen-doped multicolor carbon dots for environmental and biological applications[J]. J. Mol. Liq., 2019, 296: 111817. [Baidu Scholar]
KONG D P, YAN F Y, HAN Z Y, et al. Cobalt(Ⅱ) ions detection using carbon dots as an sensitive and selective fluorescent probe[J]. RSC Adv., 2016, 6(72): 67481-67487. [Baidu Scholar]
ZHANG M, LIU Y Q, YE B C. Colorimetric assay for parallel detection of Cd2+, Ni2+ and Co2+ using peptide-modified gold nanoparticles[J]. Analyst, 2012, 137(3): 601-607. [Baidu Scholar]
CHEN Y M, SHANG P X, DONG Y Q, et al. Regulating the overlap between the absorption spectrum of metal ion-chromogenic agent and the emission spectrum of carbon-based dots to improve the sensing performance for metal ions[J]. Sens. Actuators B Chem., 2017, 242: 1210-1215. [Baidu Scholar]
SUN L L, LIU Y Y, WANG Y S, et al. Nitrogen and sulfur co-doped carbon dots as selective and visual sensors for monitoring cobalt ions[J]. Opt. Mater., 2021, 112: 110787. [Baidu Scholar]
0
Views
194
Downloads
1
CSCD
Related Articles
Related Author
Related Institution