Your Location:
Home >
Browse articles >
Preparation of Pig Bone Nitrogen-doped Carbon Quantum Dots and Application in Detection of Co2+
Luminescence Applications and Interdisciplinary Fields | Updated:2021-11-23
|
    • Preparation of Pig Bone Nitrogen-doped Carbon Quantum Dots and Application in Detection of Co2+

      Enhanced Publication
    • QIAN Wen

      1 ,  

      HE Li

      1 ,  

      PAN Wu-shuang

      1 ,  

      CHEN Yan-hua

      1 ,  

      WANG Hui

      1 ,  

      LIU Shu-liang

      1 ,  

      CHEN Shu-juan

      1 ,  

      LIU Ai-ping

      1 ,  
    • Chinese Journal of Luminescence   Vol. 42, Issue 11, Pages: 1818-1827(2021)
    • DOI:10.37188/CJL.20210260    

      CLC: O482.31
    • Received:04 August 2021

      Revised:11 August 2021

      Published:01 November 2021

    Scan QR Code

  • Cite this article

    PDF

  • Wen QIAN, Li HE, Wu-shuang PAN, et al. Preparation of Pig Bone Nitrogen-doped Carbon Quantum Dots and Application in Detection of Co2+[J]. Chinese journal of luminescence, 2021, 42(11): 1818-1827. DOI: 10.37188/CJL.20210260.

  •  
  •  
    Sections

    Abstract

    Nitrogen-doped carbon quantum dots(N-CQDs) were successfully synthesized using pig bone and ethylenediamine as carbon and nitrogen sources by one-step hydrothermal method. Structure, optical properties and element composition of N-CQDs have been studied by transmission electron microscope(TEM), Fourier transform infrared spectroscopy(FT-IR), X-ray diffractometer patterns(XRD), UV-Vis absorption spectroscopy(UV-Vis) and X-ray photoelectron spectroscopy(XPS) technologies. The synthesized N-CQDs have a high quantum yield(26.4%), an average particle size of 2.34 nm, showing bright blue fluorescence under a 365 nm UV lamp. The study found that Co2+ had a good quenching effect on N-CQDs, so as to establish a new method for rapid detection of Co2+. The fluorescence quenching intensity of N-CQDs has a good linear relationship with the concentration of Co2+ at 0-15 μg/mL and 30-80 μg/mL, the detection limit is 20 μg/L, and the recovery rate of standard addition is 97.26%-109.14%, RSD<3.24%, which can be applied to the determination of Co2+ content in actual water samples.

    transl

    Keywords

    nitrogen-doped carbon quantum dots; pig bone; fluorescence detection; Co2+

    transl

    1 引言

    碳量子点(Carbon quantum dots,CQDs)是一类尺寸小于10 nm具有量子限域效应的新型零维碳纳米材料[

    1],与金属纳米团簇和传统的半导体量子点相比,CQDs由于其低毒性[2]、更宽的光致发光光谱[3]和高荧光稳定性[4]等独特优势,可被开发为具有快速、选择性好、灵敏度高和低毒性等出色性能的荧光探针,用于选择性检测有害物质。
    transl

    钴离子(Co2+)是人体必需的一种微量元素,可以促使红细胞和部分酶的合成、调节酶和辅助因子的催化活性,在人体中起着重要作用[

    5-6]。但是,过量摄入Co2+会使机体内的自由基过剩,导致细胞凋亡,进而使人患上哮喘、鼻炎、过敏性皮炎和心肌病等疾病[7]。考虑到Co2+引起的毒性作用,世界卫生组织(WHO)规定饮用水中Co2+的限量为40 μg/L[8]。现有的CQDs检测Co2+方法大多以化学物质为前体,对环境及人体健康造成一定的危害,且量子产率较低。田等[9]以化学物质对苯二胺和天冬酰胺为原料,通过一步水热法合成了绿色荧光的N-CQDs,用于检测Co2+及生物成像,但量子产率仅为15.5%。京等[10]以丙烯酸碳源,乙二胺为氮源,采用水热法制备了N-CQDs,量子产率为22.7%。因此,以生物质材料为碳源,采用简单、快速、可控的水热法合成高荧光CQDs,成为了分析检测研究的热点。
    transl

    我国是世界上禽、畜产量最多的国家之一,2018年中国猪肉总产量为5 400万吨,约占全球产量的50%,若以猪骨占猪肉的9%~14%计算[

    11],我国年均产生486~756万吨猪骨。然而,除排骨和腔骨可直接用于饮食而被大量需求外,其他骨头的利用率均不高,造成了极大的资源浪费和环境危害。由于猪骨富含脂肪与蛋白质等物质,可作为制备碳量子点的良好碳源,因此本文以生物质废弃物猪骨(棒子骨)、乙二胺为前驱体,采用绿色经济的水热法合成猪骨氮掺杂碳量子点(N-CQDs),通过各种表征技术研究了N-CQDs的结构和光学性质,探究了N-CQDs的稳定性,建立了一种快速检测Co2+的碳量子点荧光分析方法,并用于实际样品中Co2+的检测。
    transl

    2 实验

    2.1 实验试剂与仪器

    试剂:猪骨(棒子骨)收集于中国雅安苍坪山农贸市场(将猪骨剔除碎肉洗净后,置于60 ℃烘箱中烘干,然后用粉碎机研磨成粉末状,100目过筛保存备用)。乙二胺、CoCl2、KCl、ZnCl2、BaCl2、MgCl2、NaCl、CdCl2、CaCl2、NiCl2、FeCl3、CuCl2、HgCl2、AlCl3、MnCl2、CrCl3、硝酸溶液均购于成都市科隆化学品有限公司(中国成都)。硫酸奎宁购自迈坤化工有限公司(中国上海)。其他化学药品和溶剂均购自万科试剂有限公司(中国雅安),所有试剂均为分析纯。

    transl

    仪器:Varioskan Flash全波长扫描式酶标仪(美国赛默飞世尔科技有限公司);Lumina荧光分光光度计(美国赛默飞世尔科技有限公司);NICOLETiS10 型傅里叶变换红外光谱仪(美国赛默飞世尔科技有限公司);TEM-2100透射电子显微镜(日本LJEMOC);Milli-Q Gradient超纯水系统(美国密理博公司);Shimadzu D/Max-2500 X射线衍射仪(日本岛津公司)等。

    transl

    2.2 N-CQDs制备

    本实验采用水热法制备绿色生物质猪骨氮掺杂碳量子点。制备方法如下:将骨粉与乙二胺混合在60 mL去离子水中搅拌均匀,然后将混合物转移到100 mL四氟乙烯内胆 Teflon反应釜中,并在烘箱中恒温加热,待反应液冷却得到黄褐色溶液。离心(4 000 r/20 min)后用0.22 μm滤膜过滤除去大颗粒杂质得到N-CQDs溶液,在4 ℃冰箱中避光保存。考察反应温度(160,180,200,220,240 ℃)、反应时间(8,10,12,14,16 h)、骨粉量(4,5,6,7,8 g)和乙二胺量(0.6,0.7,0.8,0.9,1 mL)对N-CQDs荧光强度的影响,确定最佳制备条件。

    transl

    2.3 N-CQDs表征

    TEM-2100透射电子显微镜进行形貌特征分析;Lumina荧光分光光度计测量N-CQDs的荧光光谱;NICOLETiS10 型傅里叶变换红外光谱仪测定N-CQDs表面官能团;XRD-6000X射线衍射光谱仪测定XRD 谱图;Shimadzu D/Max-2500 X射线衍射仪测定XPS谱图;MAZ2012马尔文粒度仪测定Zeta电位。

    transl

    2.4 量子产率(QY)测定

    使用硫酸奎宁(在350 nm的0.1 mol/L H2SO4中 QY=54%)为参比物质,分别测试N-CQDs和硫酸奎宁的紫外-可见吸收光谱及荧光光谱,代入公式(1):

    transl

    math (1)

    其中η为量子产率,I表示荧光发射强度,n表示溶剂的折射率,A表示吸光度。下标R和S分别表示已知的荧光标准样品和实验样品[

    10]
    transl

    2.5 N-CQDs稳定性测定

    将制备得到的N-CQDs溶液每隔7 d记录荧光发射光谱,考察N-CQDs储藏时间稳定性。将N-CQDs溶液置于365 nm紫外光下,分别照射0,30,60,90,120,150,180 min,考察N-CQDs光漂白稳定性。用0.5 mol/L的盐酸和氢氧化钠溶液调节N-CQDs溶液的pH值,考察N-CQDs的pH稳定性。在N-CQDs溶液中加入50 μL NaCl溶液,其浓度分别为0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 mol/L,考察N-CQDs的离子稳定性。上述所有测试均是在417 nm激发波长下记录荧光发射光谱,平行测定3次。

    transl

    2.6 N-CQDs检测Co2+

    在荧光比色皿中,加入1 mL 100倍分散体 N-CQDs 溶液、1 mL PBS(pH=7)以及分别加入浓度为 0.1,0.5,1,2,5,8,10,12,15, 20,25,30,40,50,60,70,80,90,100 μg/mL 的Co2+溶液,混合均匀后20 ℃反应10 min。417 nm激发波长下记录荧光发射光谱,以荧光猝灭率F/F0为指标(F是加入Co2+溶液时的荧光强度,F0是不加入Co2+溶液时的荧光强度)。

    transl

    在N-CQDs溶液中,分别加入1 mL浓度为100 μg/mL的金属离子水溶液(Co2+、K+、Zn2+、Ba2+、Mg2+、Na+、Cd2+、Ca2+、Ni2+、Fe3+、Cu2+、Hg2+、Al3+、Mn2+、Cr3+),检测存在不同代表性离子的荧光强度,考察其选择性。

    transl

    在N-CQDs溶液中,加入1 mL浓度为100 μg/mL的Co2+溶液后,再分别加入不同倍数潜在干扰物离子溶液(Co2+、K+、Zn2+、Ba2+、Mg2+、Na+、Cd2+、Ca2+、Ni2+、Fe3+、Cu2+、Hg2+、Al3+、Mn2+、Cr3+ 、H2Pmath 、Nmath 、Cmath 、Smath 、OH-、Lys、Asp、Cys、Trp、Thr、Gly、Phe)与体系混合,检测存在潜在干扰性离子条件下,体系的荧光强度变化,考察其抗干扰性。上述所有测试均是平行测定3次。

    transl

    2.7 实际样品测定

    分别以来自实验室的自来水和青衣江(中国雅安)的河水作为实际检测样品,评估N-CQDs检测Co2+的实际适用性。根据HJ/T 91-2002采集样品后,将两种样品都分为两份。一份经0.45 μm微孔滤膜过滤,用硫酸溶液调节水样pH小于2,用于分光光度法检测(HJ 550-2015);另一份经0.22 μm微孔滤膜过滤,用硫酸溶液调节水样pH至中性,用于N-CQDs检测。

    transl

    3 结果与讨论

    3.1 N-CQDs制备条件优化

    为了获得高荧光性能的N-CQDs,考察了水热反应温度、水热反应时间、骨粉量和乙二胺量对N-CQDs荧光强度的影响。由图2(a)可知,水热反应温度为200 ℃时(6 g骨粉,0.8 mL乙二胺,12 h),N-CQDs荧光强度最高。当水热反应温度开始升高,N-CQDs荧光强度也随之增加,可能是由于在碳化过程中合成了更多的N-CQDs颗粒;但随着温度进一步升高,N-CQDs荧光强度下降,这可能是由于N-CQDs颗粒发生了团聚[

    12]。由图2(b)可知,当水热反应时间为12 h时(6 g骨粉,0.8 mL乙二胺,200 ℃),N-CQDs荧光强度达到最高值。由图2(c)可知,在骨粉量为6 g时(0.8 mL乙二胺,水热12 h,200 ℃)N-CQDs荧光最强。由2(d)可知,在乙二胺量为0.8 mL时(6 g骨粉,0.8 mL乙二胺,12 h),N-CQDs荧光强度最高,随着乙二胺用量继续增加,N-CQDs荧光强度降低,可能是由于表面氨基数量增加,更易导致碳量子点聚合,产生自猝灭[13]
    transl

    fig

    图1  N-CQDs的制备及检测Co2+示意图

    Fig.1  Schematic representation of N-CQDs preparation and detection of Co2+

    icon Download:  Full-size image | High-res image | Low-res image
    fig

    图2  水热反应温度(a)、水热反应时间(b)、骨粉量(c)、乙二胺量(d)对N-CQDs荧光强度的影响。插图:N-CQDs在紫外暗箱中的图片。

    Fig.2  Influence of hydrothermal reaction temperature(a), hydrothermal reaction time(b), bone meal amount(c), ethylenediamine amount(d) on the fluorescence intensity of N-CQDs. Illustration: picture of N-CQDs in a UV dark box.

    icon Download:  Full-size image | High-res image | Low-res image

    3.2 N-CQDs表征

    图3(a)显示,所制备的N-CQDs呈圆球形,分散性好,且尺寸均一,插图表明,N-CQDs晶格条纹的晶面间距为0.21 nm,与石墨碳相符[

    14]图3(b)是N-CQDs的粒径分布图,可以得到N-CQDs的平均粒径大小为2.34 nm。图3(c)是N-CQDs的XRD谱图,N-CQDs在2θ=22.2°出现宽峰,对应于石墨碳的(002)晶面,证实了N-CQDs的无定形结构[15-16]。为了了解N-CQDs的表面官能团,对掺杂与不掺杂碳量子点(CQDs)进行了傅里叶变换红外光谱分析,如图3(d)所示。3 440 cm-1处的峰归属于O—H和N—H的伸缩振动[17],2 962 cm-1处的峰是由于C—H的伸缩振动[18],1 655 cm-1和1 510 cm-1处的峰是Cmath O和Cmath C基团不对称拉伸振动的结果[19],1 460 cm-1处的峰归因于C—N的拉伸振动[20],1 041 cm-1处的峰归因于C—O的伸缩振动[21]。CQDs的FT-IR谱图不含C—N的拉伸振动吸收峰,说明氮原子成功掺杂,并且N-CQDs表面含有氨基、羧基等官能团。N-CQDs水溶液的Zeta电位值为-31.3 mV,N-CQDs粒子带负电,并具有一定的稳定性。
    transl

    fig

    图3  N-CQDs的TEM图(a)、粒径分布图(b)、XRD谱图(c)、FT-IR谱图(d)。插图:N-CQDs的HRTEM图。

    Fig.3  TEM image(a), particle size distribution(b), XRD spectrum(c), FT-IR spectra(d) of N-CQDs. Inset: HRTEM image of N-CQDs.

    icon Download:  Full-size image | High-res image | Low-res image

    N-CQDs的光学性质通过紫外-可见吸收光谱和荧光光谱进行分析。图4(a)显示,N-CQDs在紫外吸收区表现出强烈的吸收,紫外吸收光谱在272 nm和332 nm处存在两个特征峰,在272 nm处的峰归因于Cmath C的π-π*轨道跃迁[

    22],332 nm处的峰归因于Cmath O的n-π*轨道跃迁[23]。荧光光谱表明,N-CQDs的最大发射峰位于488 nm,最大激发波长为417 nm。图4(a)插图显示,N-CQDs的水溶液在日光下呈黄褐色,在365 nm紫外光下呈蓝色。图4(b)显示,在340~460 nm的激发波长以20 nm的增量得到的N-CQDs发射光谱,随着激发波长的增加,最大发射峰发生红移,表明N-CQDs具有激发波长依赖性,这种现象可能与N-CQD表面不均匀的化学结构、分子状态及量子限域效应有关[24-25]。以硫酸奎宁(0.1 mol/L H2SO4,QY=54%)为标准物质,测得的N-CQDs的量子产率为26.4%。
    transl

    fig

    图4  (a)N-CQDs的紫外-可见吸收光谱和荧光光谱,插图:N-CQDs水溶液在可见光(左)和紫外光(365 nm,右)下的照片;(b)不同激发波长下N-CQDs的发射光谱。

    Fig.4  (a)UV-Vis absorption spectra and fluorescence spectra of N-CQDs. Inset: photograph of N-CQDs aqueous solution under visible light(left) and ultraviolet light(365 nm, right).(b)Emission spectra of N-CQDs at different excitation wavelengths.

    icon Download:  Full-size image | High-res image | Low-res image

    采用XPS分析了N-CQDs表面的化学元素及化学键,如图5(a)所示,3个吸收峰分别对应C1s、N1s、O1s,键能分别为285.08,400.08,532.08 eV,3种元素的含量分别为64.41%、8.6%、26.98%。对XPS全谱图进行分峰,结果如图5(b)~(d)图5(b)是C1s的分峰图,对应的键能分别为284.69,285.69,288.03 eV,分别对应C—C、C—N、Cmath O/Cmath N[

    26]图5(c)是N1s的分峰图,对应的键能分别为399.05,399.9,401.16 eV,分别对应Omath C—N、C—N—C、N—H[27-28]图5(d)是O1s的分峰图,对应的键能分别为531.1,532.08,532.64 eV,分别对应Cmath O、C—O、C—OH/C—O—C[29-30]。这些结果与FT-IR结果一致,表明N-CQDs表面具有含氧和含氮基团,赋予了N-CQDs良好的水溶性。由图6可知,N-CQDs在4 ℃条件下保存60 d后荧光强度下降,可能是由于N-CQDs间产生团聚,造成荧光强度减弱。在紫外照射180 min、不同浓度NaCl条件和较宽的pH范围内,N-CQDs依然显示出强荧光、良好的稳定性和抗漂白性。
    transl

    fig

    图5  (a)N-CQDs的XPS谱图;(b)C1s的高分辨率XPS谱图;(c)N1s的高分辨率谱图;(d)O1s的高分辨率XPS谱图。

    Fig.5  XPS of the N-CQDs(a) and C1s(b). N1s(c) and O1s(d) spectra of the CDs.

    icon Download:  Full-size image | High-res image | Low-res image
    fig

    图6  储藏时间(a)、紫外照射时间(b)、pH(c)、NaCl浓度(d)对N-CQDs荧光强度的影响。

    Fig.6  Influence of storage time(a), ultraviolet irradiation time(b), pH(c), NaCl concentration(d) on the fluorescence intensity of N-CQDs.

    icon Download:  Full-size image | High-res image | Low-res image

    3.3 N-CQDs检测Co2+

    图7(a)所示,研究了N-CQDs对不同金属离子的选择性,将各种金属离子分别添加到N-CQDs的水溶液中,包括Co2+、K+、Zn2+、Ba2+、Mg2+、Na+、Cd2+、Ca2+、Ni2+、Fe3+、Cu2+、Hg2+、Al3+、Mn2+、Cr3+,金属离子的浓度均为100 μg/mL,仅Co2+具有猝灭N-CQDs荧光强度的能力,而其他金属离子几乎没有猝灭作用。图7(b)显示,在N-CQDs/Co2+溶液中加入其他干扰物质后,溶液的荧光强度无明显变化,表明这些干扰物质对Co2+的测定基本无干扰,这可能是由于Co2+与N-CQDs表面的某些官能团(—COOH、—OH、—CONH)反应形成复合物,促使电子从N-CQDs的激发态转移到Co2+的3d轨道,导致荧光猝灭[

    38]。如图7(c)、(d)所示,随着Co2+浓度的增加,N-CQDs在488 nm处的荧光强度逐渐降低。Co2+浓度为0~15 μg/mL(Y=-0.01104X+0.98879,R2=0.980 21)和30~80 μg/mL(Y=-0.0034X+0.85301,R2=0.990 06)时与N-CQDs猝灭程度呈线性关系,检出限(S/N=3)达到20 μg/L,低于WHO规定的限量值。与表1中Co2+检测方法相比较,本方法具有检出限较低、线性范围宽、成本低等优点。
    transl

    fig

    图7  (a)不同金属离子对N-CQDs荧光强度的影响;(b)其他物质存在时Co2+的测定;(c)不同Co2+浓度对N-CQDs荧光强度的影响;(d)F/F0与Co2+浓度在0~100 μg·mL-1的关系曲线(F是加入Co2+溶液时N-CQDs的荧光强度,F0是不加入Co2+溶液时N-CQDs的荧光强度),插图:F/F0与Co2+浓度的线性关系(红色曲线:0~15 μg·mL-1;蓝色曲线:30~80 μg·mL-1);(e)在不同温度下Co2+猝灭的N-CQDs的Stern-Volmer曲线;(f)不存在和存在 Co2+ 时N-CQDs的紫外-可见吸收光谱。

    Fig.7  (a)Influence of different metal ions on the fluorescence intensity of N-CQDs. (b)Determination of Co2+ in the presence of other substances. (c)Influence of different Co2+ concentrations on the fluorescence intensity of N-CQDs. (d)Relationship curve between F/F0 and Co2+ concentration(F is the fluorescence intensity of N-CQDs when Co2+ solution is added, and F0 is the fluorescence intensity of N-CQDs when Co2+ solution is not added). Inset: linear relationship between F/F0 and Co2+ concentration(red curve: 0-15 μg·mL-1; blue curve: 30-80 μg·mL-1).(e)Stern-Volmer curves of Co2+ quenched N-CQDs at different temperature.(f)UV-Vis absorption spectra of N-CQDs in the absence and presence of Co2+.

    icon Download:  Full-size image | High-res image | Low-res image
    表1  Co2+检测方法比较
    Tab.1  Comparison of Co2+ detection methods
     方法材料线性范围检出限参考文献
    荧光 N-CQDs 0~15 μg·mL-1, 30~80 μg·mL-1 20 μg·L-1(0.34 μmol·L-1) 本方法
    比色分析 硫化锌量子点 10~1 000 mg·L-1 10 mg·L-1 [31]
    荧光 N-CQDs 0~90 μmol·L-1 0.4 μmol·L-1 [32]
    荧光 CQDs 0.1~30 μmol·L-1 0.052 μmol·L-1 [33]
    荧光 N-CQDs 5~30 μmol·L-1 0.43 μmol·L-1 [34]
    荧光 CQDs 0~40 μmol·L-1 0.45 μmol·L-1 [35]
    吸光度 金纳米粒子 1 000~15 000 μmol·L-1 14 μmol·L-1 [36]
    荧光 N,S-CQDs 0.08~100 μmol·L-1 0.08 μmol·L-1 [37]
    icon Download:  CSV icon Download:  Table Images

    荧光猝灭是荧光分子的表面基团与猝灭物质发生反应,导致荧光强度降低,通常分为静态猝灭和动态猝灭。静态猝灭的荧光猝灭常数随温度升高而减小,动态猝灭的荧光猝灭常数随温度升高而增大[

    29]。为了研究Co2+对N-CQDs荧光猝灭的机理,本文考察了不同温度下Co2+对N-CQDs的猝灭作用,并用Stern-Volmer方程来判断猝灭机理。Stern-Volmer方程为:
    transl

    math (2)

    其中F0是不加入Co2+溶液时N-CQDs的荧光强度,F是加入Co2+溶液时N-CQDs的荧光强度,KSV是Stern-Volmer猝灭常数,C为加入Co2+的浓度,曲线如图7(e)所示。在15,25,35 ℃下,猝灭常数KSV分别为0.013 1,0.011 9,0.009,即随着温度升高,猝灭常数KSV减小,表明Co2+是通过静态猝灭使得N-CQDs的荧光发生猝灭。此外,图7(f)显示,在N-CQDs溶液中加入Co2+后,其紫外吸收峰发生了变化,这可能是Co2+与N-CQDs的表面官能团形成了非荧光的基态复合物,并没有在N-CQDs的激发态发生反应。以上结果充分证明Co2+对N-CQDs的荧光猝灭类型为静态猝灭。

    transl

    3.4 实际样品中Co2+的检测

    选择自来水和河水为实际样品,然后采用加标回收法检测水样中的Co2+,结果如表2所示。该方法的回收率为97.26%~109.14%,RSD<3.24%,回收率的准确度优于分光光度法分析结果96.15%~117.05%,表明N-CQDs能够用于实际水样中Co2+的检测。

    transl

    表2  自来水和河水中Co2+的检测结果
    Tab.2  Test results of Co2+ in tap water and river water
    SampleFound/(μg·L-1)Added/ (μg·L-1)N-CQDsHJ 550-2015
    Total found/(μg·L-1)Recover/%RSD/%Total found/(μg·L-1)Recover/%RSD/%
    River water 0 20 21.83 109.14 1.63 23.41 117.05 2.32
    0 40 39.25 98.13 3.24 44.70 111.75 5.71
    0 80 77.81 97.26 3.19 78.24 97.80 4.36
    Tap water 0 20 19.57 97.85 1.91 19.23 96.15 4.60
    0 40 41.14 102.85 0.90 44.15 110.38 4.05
    0 80 79.26 99.08 1.25 84.17 105.21 2.83
    icon Download:  CSV icon Download:  Table Images

    4 结论

    本文以生物质废弃物猪骨为碳源,通过一步水热法合成了N-CQDs。XPS和FT-IR表征分析表明氮元素成功掺杂到碳量子点的结构中。N-CQDs的平均粒径为2.34 nm,颗粒分散均匀,表现出良好的溶解度、高稳定性和高荧光强度。基于Co2+能够有效猝灭N-CQDs的荧光,建立了一种高灵敏性和选择性的Co2+的检测方法,检测线性范围为0~15 μg/mL和30~80 μg/mL,检出限为20 μg/L,并能够用于实际样品中Co2+的检测,为环境分析提供了一种简单、快速、灵敏的检测Co2+的新方法。

    transl

    本文专家审稿意见及作者回复内容的下载地址:http://cjl.lightpublishing.cn/thesisDetails#10.37188/CJL.20210260.

    transl

    参考文献:

    [1]

    TRUFFAULT L, TA M T, DEVERS T, et al. On the curve-fitting of XPS Ce(3d) spectra of cerium oxides by E. Paparazzo, Materials Research Bulletin 46(2011) 323-326[J]. Mater. Res. Bull., 2012, 47(11): 3941-3942. [Baidu Scholar] 

    [2]

    WANG C, ZHOU J D, RAN G X, et al. Bi-functional fluorescent polymer dots:a one-step synthesis via controlled hydrothermal treatment and application as probes for the detection of temperature and Fe3+[J]. J. Mater. Chem. C, 2017, 5(2): 434-443. [Baidu Scholar] 

    [3]

    ZHANG H J, CHEN Y L, LIANG M J, et al. Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells[J]. Anal. Chem., 2014, 86(19): 9846-9852. [Baidu Scholar] 

    [4]

    ZHU X H, ZHAO T B, NIE Z, et al. Nitrogen-doped carbon nanoparticle modulated turn-on fluorescent probes for histidine detection and its imaging in living cells[J]. Nanoscale, 2016, 8(4): 2205-2211. [Baidu Scholar] 

    [5]

    AWUAL M R, ISMAEL M, YAITA T. Efficient detection and extraction of cobalt(Ⅱ) from lithium ion batteries and wastewater by novel composite adsorbent[J]. Sens. Actuators B Chem., 2014, 191: 9-18. [Baidu Scholar] 

    [6]

    LIAO S, ZHU F W, ZHAO X Y, et al. A reusable P, N-doped carbon quantum dot fluorescent sensor for cobalt ion[J]. Sens. Actuators B Chem., 2018, 260: 156-164. [Baidu Scholar] 

    [7]

    STOICA A I, PELTEA M, BAIULESCU G E, et al. Determination of cobalt in pharmaceutical products[J]. J. Pharm. Biomed. Anal., 2004, 36(3): 653-656. [Baidu Scholar] 

    [8]

    SIMONSEN L O, HARBAK H, BENNEKOU P. Cobalt metabolism and toxicology—a brief update[J]. Sci. Total Environ., 2012, 432: 210-215. [Baidu Scholar] 

    [9]

    TIAN M, ZHANG J Q, LIU Y M, et al. One-pot synthesis of nitrogen-doped carbon dots for highly sensitive determination of cobalt ions and biological imaging[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 252: 119541. [Baidu Scholar] 

    [10]

    JING N, TIAN M, WANG Y T, et al. Nitrogen-doped carbon dots synthesized from acrylic acid and ethylenediamine for simple and selective determination of cobalt ions in aqueous media[J]. J. Lumin., 2019, 206: 169-175. [Baidu Scholar] 

    [11]

    张崟, 卓勇贤, 张佳敏, . 猪骨利用的研究进展[J]. 农产品加工·学刊, 2010(11): 83-86. [Baidu Scholar] 

    ZHANG Y, ZHUO Y X, ZHANG J M, et al. Researches on application of pig bone[J]. Acad. Periodical Farm Products Process., 2010(11): 83-86. (in Chinese) [Baidu Scholar] 

    [12]

    张正伟, 彭可睿, 陈建秋, . 生物质基碳量子点的制备及其光谱性质研究[J]. 生物质化学工程, 2014, 48(3): 30-35. [Baidu Scholar] 

    ZHANG Z W, PENG K R, CHEN J Q, et al. Preparation of carbon quantum dots by biologic matters and its spectrum properties[J]. Bio. Chem. Eng., 2014, 48(3): 30-35. (in Chinese) [Baidu Scholar] 

    [13]

    LU M C, DUAN Y X, SONG Y H, et al. Green preparation of versatile nitrogen-doped carbon quantum dots from watermelon juice for cell imaging, detection of Fe3+ ions and cysteine, and optical thermometry[J]. J. Mol. Liq., 2018, 269: 766-774. [Baidu Scholar] 

    [14]

    WANG C J, SHI H X, YANG M, et al. Facile synthesis of novel carbon quantum dots from biomass waste for highly sensitive detection of iron ions[J]. Mater. Res. Bull., 2020, 124: 110730-1-8. [Baidu Scholar] 

    [15]

    LIN L P, RONG M C, LU S S, et al. A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2, 4, 6-trinitrophenol in aqueous solution[J]. Nanoscale, 2015, 7(5): 1872-1878. [Baidu Scholar] 

    [16]

    HSU P C, CHANG H T. Synthesis of high-quality carbon nanodots from hydrophilic compounds:role of functional groups[J]. Chem. Commun., 2012, 48(33): 3984-3986. [Baidu Scholar] 

    [17]

    SHEN T Y, JIA P Y, CHEN D S, et al. Hydrothermal synthesis of N-doped carbon quantum dots and their application in ion-detection and cell-imaging[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 248: 119282. [Baidu Scholar] 

    [18]

    JOSEPH J, ANAPPARA A A. Ellagic acid-functionalized fluorescent carbon dots for ultrasensitive and selective detection of mercuric ions via quenching[J]. J. Lumin., 2017, 192: 761-766. [Baidu Scholar] 

    [19]

    WU Z L, GAO M X, WANG T T, et al. A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots[J]. Nanoscale, 2014, 6(7): 3868-3874. [Baidu Scholar] 

    [20]

    SUN D, BAN R, ZHANG P H, et al. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties[J]. Carbon, 2013, 64: 424-434. [Baidu Scholar] 

    [21]

    LIU W F, JIA H S, ZHANG J, et al. Preparation of nitrogen-doped carbon quantum dots(NCQDs) and application for non-enzymatic detection of glucose[J]. Microchem. J., 2020, 158: 105187. [Baidu Scholar] 

    [22]

    GUO Y M, ZHANG L F, CAO F P, et al. Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+[J]. Sci. Rep., 2016, 6: 35795-1-7. [Baidu Scholar] 

    [23]

    QI H J, TENG M, LIU M, et al. Biomass-derived nitrogen-doped carbon quantum dots:highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines[J]. J. Colloid Interface Sci., 2019, 539: 332-341. [Baidu Scholar] 

    [24]

    TANG Y, RAO L S, LI Z T, et al. Rapid synthesis of highly photoluminescent nitrogen-doped carbon quantum dots via a microreactor with foamy copper for the detection of Hg2+ ions[J]. Sens. Actuators B Chem., 2018, 258: 637-647. [Baidu Scholar] 

    [25]

    LU D, TANG Y P, GAO J W, et al. Concentrated solar irradiation protocols for the efficient synthesis of tri-color emissive carbon dots and photophysical studies[J]. J. Mater. Chem. C, 2018, 6(47): 13013-13022. [Baidu Scholar] 

    [26]

    NIU W J, LI Y, ZHU R H, et al. Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging[J]. Sens. Actuators B Chem., 2015, 218: 229-236. [Baidu Scholar] 

    [27]

    HU X T, LI Y X, XU Y W, et al. Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk[J]. Food Chem., 2021, 339: 127775. [Baidu Scholar] 

    [28]

    LIU W, DIAO H P, CHANG H H, et al. Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging[J]. Sens. Actuators B Chem., 2017, 241: 190-198. [Baidu Scholar] 

    [29]

    ZHAO C X, JIAO Y, HU F, et al. Green synthesis of carbon dots from pork and application as nanosensors for uric acid detection[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 190: 360-367. [Baidu Scholar] 

    [30]

    RAMEZANI Z, QORBANPOUR M, RAHBAR N. Green synthesis of carbon quantum dots using quince fruit(Cydonia oblonga) powder as carbon precursor:application in cell imaging and As3+ determination[J]. Colloids Surfaces A Physicochem. Eng. Aspects, 2018, 549: 58-66. [Baidu Scholar] 

    [31]

    LIU X, YANG Y, LI Q, et al. Portably colorimetric paper sensor based on ZnS quantum dots for semi-quantitative detection of Co2+ through the measurement of grey level[J]. Sens. Actuators B Chem., 2018, 260: 1068-1075. [Baidu Scholar] 

    [32]

    LIU X, WEI S G, DIAO Q P, et al. Hydrothermal synthesis of N-doped carbon dots for selective fluorescent sensing and cellular imaging of cobalt(Ⅱ)[J]. Microchim. Acta, 2017, 184(10): 3825-3831. [Baidu Scholar] 

    [33]

    TIAN M, LIU Y M, WANG Y T, et al. Facile synthesis of yellow fluorescent carbon dots for highly sensitive sensing of cobalt ions and biological imaging[J]. Anal. Methods, 2019, 11(32): 4077-4083. [Baidu Scholar] 

    [34]

    ATCHUDAN R, EDISON T N J I, PERUMAL S, et al. Betel-derived nitrogen-doped multicolor carbon dots for environmental and biological applications[J]. J. Mol. Liq., 2019, 296: 111817. [Baidu Scholar] 

    [35]

    KONG D P, YAN F Y, HAN Z Y, et al. Cobalt(Ⅱ) ions detection using carbon dots as an sensitive and selective fluorescent probe[J]. RSC Adv., 2016, 6(72): 67481-67487. [Baidu Scholar] 

    [36]

    ZHANG M, LIU Y Q, YE B C. Colorimetric assay for parallel detection of Cd2+, Ni2+ and Co2+ using peptide-modified gold nanoparticles[J]. Analyst, 2012, 137(3): 601-607. [Baidu Scholar] 

    [37]

    CHEN Y M, SHANG P X, DONG Y Q, et al. Regulating the overlap between the absorption spectrum of metal ion-chromogenic agent and the emission spectrum of carbon-based dots to improve the sensing performance for metal ions[J]. Sens. Actuators B Chem., 2017, 242: 1210-1215. [Baidu Scholar] 

    [38]

    SUN L L, LIU Y Y, WANG Y S, et al. Nitrogen and sulfur co-doped carbon dots as selective and visual sensors for monitoring cobalt ions[J]. Opt. Mater., 2021, 112: 110787. [Baidu Scholar] 

    0

    Views

    194

    Downloads

    1

    CSCD

    Alert me when the article has been cited
    Submit
    Tools
    Download
    Export Citation
    Share
    Add to favorites
    Add to my album

    Related Articles

    Eu3+@MOF Constructed by Post Synthesis Modification Method and Its Application in Detection of Metal Ions
    Cu(Ⅰ) Ion Detection with Europium (Ⅲ) Chelate Nanoparticles Based on Click Chemistry

    Related Author

    Wen QIAN
    Li HE
    Wu-shuang PAN
    Yan-hua CHEN
    Shu-liang LIU
    Shu-juan CHEN
    Ai-ping LIU
    刘爱平

    Related Institution

    College of Food Science,Sichuan Agricultural University,Yaan
    School of Chemistry and Environmental Engineering, Changchun University of Science and Technology
    Jilin Petrochemical North Chemical Industrial Company
    Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University
    Laboratory of Analytical Chemistry for Life Science, Institute of Chemistry, Chinese Academy of Sciences (CAS)
    0