浏览全部资源
扫码关注微信
1. 大连理工大学 物理与光电工程学院,辽宁 大连,116024
2. 吉林大学电子与信息工程学院 集成光电子学国家重点联合实验室,吉林 长春,130023
Received:08 March 2011,
Revised:21 April 2011,
Published Online:22 September 2011,
Published:22 September 2011
移动端阅览
许露, 梁红伟, 刘远达, 李春野, 柳阳, 边继明, 李国兴, 李万程, 吴国光, 杜国同. MOCVD法制备Cu掺杂ZnO薄膜[J]. 发光学报, 2011,32(9): 956-961
XU Lu, LIANG Hong-wei, LIU Yuan-da, LI Chun-ye, LIU Yang, BIAN Ji-ming, LI Guo-xing, LI Wan-cheng, WU Guo-guang, DU Guo-tong. Cu-doped ZnO Thin Film Prepared by Metallorganic Chemical Vapor Deposition[J]. Chinese Journal of Luminescence, 2011,32(9): 956-961
许露, 梁红伟, 刘远达, 李春野, 柳阳, 边继明, 李国兴, 李万程, 吴国光, 杜国同. MOCVD法制备Cu掺杂ZnO薄膜[J]. 发光学报, 2011,32(9): 956-961 DOI:
XU Lu, LIANG Hong-wei, LIU Yuan-da, LI Chun-ye, LIU Yang, BIAN Ji-ming, LI Guo-xing, LI Wan-cheng, WU Guo-guang, DU Guo-tong. Cu-doped ZnO Thin Film Prepared by Metallorganic Chemical Vapor Deposition[J]. Chinese Journal of Luminescence, 2011,32(9): 956-961 DOI:
通过金属有机物化学气相沉积(MOCVD)设备
在
c
-Al
2
O
3
衬底上生长本征和 Cu掺杂ZnO(ZnO:Cu)薄膜。X射线衍射(XRD)谱观察到未掺杂的ZnO和ZnO:Cu样品都呈现出较好的
c
轴择优取向生长。X射线光电子能谱(XPS)表明Cu已掺入到ZnO薄膜中。利用光致发光(PL)测试对本征ZnO和ZnO:Cu进行室温和低温PL测试
在ZnO:Cu样品的低温PL谱中观察到一个强度很强、范围很广的蓝紫光发射峰(Blue-violet发射峰
BV发射峰)
范围在2.8~3.3 eV之间
又进一步通过变温PL测试发现随着温度的升高
BV发射峰峰位发生红移
且80 K时BV发射峰高能边出现自由电子向受主能级(eA
0
)的跃迁发光
并计算了Cu受主离化能。
Un-doped and Cu-doped ZnO thin films were grown on c-Al
2
O
3
substrate by metalorganic chemical vapor deposition (MOCVD) system. The way of changing the temperature of Cu(tmhd)
2
source bottle was used to change the saturated vapor pressure of Cu (tmhd)
2
in the meantime to change the quantity of Cu(tmhd)
2
carried into the the reaction chamber. Then the content of Cu in ZnO films was tested to study the effects of Cu doping on the luminescent properties of ZnO
and explore the process technique and condition of controlling Cu valence in ZnO films. X-ray diffraction (XRD) show un-doped ZnO and ZnO:Cu samples have good
c
-axis preferred orientation growth. The Cu content of these samples were measured by X-ray photoelectron spectroscopy (XPS). The content of Cu in ZnO films were not increased when the Cu(tmhd)
2
source temperature was increased
which indicated that increasing the Cu(tmhd)
2
source temperature did not lead to any increase of the Cu-doping level
and the solubility of Cu ions in ZnO is quite low. Low-temperature photoluminescence (PL) measurements show a strong and broad blue-violet (BV) light emission peak ranging from 2.8 to 3.3 eV
which could be assigned to donor-acceptor pair (DAP) recombination (between unknown shallow donor level and Cu-related acceptor level). Temperature dependent PL show a red-shift of the BV emission with increasing the temperature from 10 to 180 K
and a new weak shoulder peak appearing at BV emission's high-energy side at 80 K
which could be assigned to eA
0
. Moreover
the decrease of Cu content in ZnO:Cu film resulted in quenching the intensity of BV emission red-shift of BV emission's peak position. This phenomenon is interesting and rarely reported in the previous works. However
we still need further study to clarify that if it is the electron transition between Zn
i
-related donor energy level and valence band that causes the BV emission.
Zu P, Tang Z K, Wong G K L, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature [J]. Solid State Communications, 1997, 103 (8):459-463.[2] Bagnall D M, Chen Y F, Zhu Z, et al. Optically pumped lasing of ZnO at room temperature [J]. Appl. Phys. Lett., 1997, 70 (17):2230-2232.[3] Look D C. Recent advances in ZnO materials and devices [J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2001, 80 (1-3):383-387.[4] Pearton S J, Norton D P, Ip K, et al. Recent advances in processing of ZnO [J]. J. Vacuum Sci. Tech. B, 2004, 22 (6):932-948.[5] zgr V, Alivov Y L, Liu C, et al. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys., 2005, 98 (4):041301-1-6.[6] Zhang S B, Wei S H, Zunger A. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO [J]. Phys. Rev. B, 2001, 63 (7):075205-1-6.[7] Aoki T, Hatanaka Y, Look D C. ZnO diode fabricated by excimer-laser doping [J]. Appl. Phys. Lett., 2000, 76 (3):3257-3258.[8] Kim K K, Kim H S, Hwang D K, et al. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant [J]. Appl. Phys. Lett., 2003, 83 (1):63-65.[9] Ryu Y R, Lee T S, White H W. Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition [J]. Appl. Phys. Lett., 2003, 83 (1):87-89.[10] Look D C, Claftin B. p-type doping and devices based on ZnO [J]. Physica Status Solidi B-Basic Research, 2004, 241 (3):624-630.[11] Yan Y, Al-Jassim M M, Wei S. Doping of ZnO by group-IB elements [J]. Appl. Phys. Lett., 2006, 89 (18):181912-1-3.[12] Qu Shengwei, Tang Xin, Lu Haifeng, et al. Optical properties of Cu-doped thin ZnO films [J]. Chin. J. Lumin. (发光学报), 2010, 31 (2):204-208 (in Chinese).[13] Li Qiyuan, Wei Changping, Sun Xiaofei. Preparation and optical properties of Ag:ZnO/SiO2 thin composite fims [J]. Chin. J. Lumin. (发光学报), 2010, 31 (2):230-234 (in Chinese).[14] Xu C X, Sun X W, Zhang X H, et al. Photoluminescent properties of copper-doped ZnO and its change with hydrogen implantation [J]. Journal of Electroceramics, 2003, 11 (1):73-79.[15] Lee H J, Kim B S, Cho C R, et al. A study of magnetic and optical properties of Cu-doped ZnO [J]. Phys. Status Solidi B, 2004, 241 (7):1533-1536.[16] Zhou Z, Kato K, Komaki T, et al. Electrical conductivity of Cu-doped ZnO and its change with hydrogen implantation [J]. J. Electroceramics, 2003, 11 (1):73-79.[17] Kanai Y. Admittance spectroscopy of Cu-doped ZnO crystals [J]. Jpn. J. Appl. Phys., 1991, 30:703-707.[18] Du Guotong, Ma Yan, Zhang Yuantao, et al. Preparation of intrinsic and N-doped p-type ZnO thin films by metalorganic vapor phase epitaxy [J]. Appl. Phys. Lett., 2005, 87 (21):213103-1-3.[19] Park M S, Min B I. Ferromagnetism in ZnO codoped with transition metals: Zn1-x(FeCo)xO and Zn1-x(FeCu)xO [J]. Phys. Rev. B, 2003, 68 (22): 224436-1-6.[20] Wang X F, Xu J B, Cheung W Y, et al. Aggregation-based growth and magnetic properties of inhomogeneous Cu-doped ZnO nanocrystals [J]. Appl. Phys. Lett., 2007, 90 (21):212502-1-3.[21] Reynolds D C, Look D C, Jogai B, et al. Neutral-donor-bound-exciton complexes in ZnO crystals [J]. Physical Review B, 1998, 57 (19):12151-12155.[22] Teke A, Ozgur U, Dogan S, et al. Excitonic fine structure and recombination dynamics in single-crystalline ZnO [J]. Physical Review B, 2004, 70 (19):195207-1-10.[23] Thonke K, Gruber T, Teofilov N, et al. Donor-acceptor pair transitions in ZnO substrate material [J]. Physica B Condensed Matter, 2001, 308 (1-2):945-948.[24] Garces N Y, Wang L, Bai L, et al. Role of copper in the green luminescence from ZnO crystals [J]. Appl. Phys. Lett., 2002, 81 (1):622-624.[25] Robbins D J, Herbert D C, Dean P J. The origin of the , , blue no-phonon transitions in ZnO:Cu-A deep-level problem [J]. J. Phys. C: Solid State Phys., 1981, 14 (20):2859-2870.
0
Views
132
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution