GAO Wu, LIU Jia-lei, BO Shu-hui, LIU Xin-hou, ZHEN Zhen. Novel NLO Chromophore Glasses as Electro-optical Materials[J]. Chinese Journal of Luminescence, 2011,32(9): 858-863
GAO Wu, LIU Jia-lei, BO Shu-hui, LIU Xin-hou, ZHEN Zhen. Novel NLO Chromophore Glasses as Electro-optical Materials[J]. Chinese Journal of Luminescence, 2011,32(9): 858-863DOI:
Novel NLO Chromophore Glasses as Electro-optical Materials
Two kinds of novel molecular glasses based on self-assembly dendritic chromophores are designed and synthesized as second-order nonlinear optical (NLO) materials
which named ETO and ETF. The chromophore glasses ETO and ETF showed excellent film-forming ability by themselves. Their glass transition temperatures (
T
g
) were determined at 41 ℃ and 39 ℃
respectively. The in-situ second harmonic generation (SHG) measurement revealed the resonant second-order NLO coefficient (
d
33
) values of 38 and 32 pm/V for the poled films of ETO and ETF
respectively. The results indicate molecular glasses provide a new possible way different from the conventional polymer approach to prepare second-order NLO materials.
关键词
Keywords
references
Dalton L R. Nonlinear optical polymeric materials:from chromophore design to commercial applieations [J]. Adv. Polym. Sci., 2002, 158 (1):1-86.[2] Burland D M, Miller R D. Second-order nonlinearity in poled-polymer systems [J]. Chem. Rev., 1994, 94 (1):31-75.[3] Kim T D, Luo J D, Cheng Y J. Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities [J]. J. Phys. Chem. C, 2008, 112 (21):8091-8098.[4] Marder S R, Cheng L T, Tiemann B G. Large first hyperpolarizabilities in push-pull polyenes by tuning of the bond length alternation and aromaticity [J]. Science, 1994, 263 (5149):511-514.[5] Moylan C R, Twieg R J, Lee V Y, et al. Nonlinear optical chromophores with large hyperpolarizabilities and enhanced thermal stabilities [J]. J. Am. Chem. Soc.,1993, 115 (26):12599-12600.[6] Kang H, Zhu P W, Yang Y, et al. Self-assembled electrooptic thin films with remarkably blue-shifted optical absorption based on an X-shaped chromophore [J]. J. Am. Chem. Soc., 2004, 126 (49):15974-15975.[7] Saadeh H, Wang L M, Yu L P. Supramolecular solid-state assemblies exhibiting electrooptic effects [J]. J. Am. Chem. Soc., 2000, 122 (3):546-547.[8] Dalton L R, Jen A K, Stierer W H. Organic electro-optic materials: some unique opportunities [J]. SPIE, 2004, 5351:1-15.[9] Dalton L R, Harper A W, Robinson B H. The role of London forces in defining noncentrosymmetric order of high dipole moment-high hyperpolar-izability chromophores in electrically poled polymeric thin films [J]. Proc. Natl. Acad. Sci., 1997, 94 (10):4842-4847.[10] Nielsen R D, Rommel H L, Robinson B H. Simulation of the loading parameter in organic nonlinear optical materials [J]. J. Phys. Chem. B, 2004, 108 (25):8659-8667.[11] Liu J L, Bo S H, Zhen Z. Enhanced poling efficiency in rigid-flexible dendritic nonlinear optical chromophores [J]. J. Incl. Phenom. Macrocycl. Chem., 2010, 68 (3):253-260.[12] Mortazavi M A, Knoesen A, Kowel S T. Second-harmonic generation and absorption studies of polymer-dye films oriented by corona-onset poling at elevated temperatures [J]. J. Opt. Soc. Am. B, 1989, 6 (4):733-741.