Carbon cones were grown on silicon substrates by bias-enhanced chemical vapor deposition using methane
hydrogen and ammonia as the reaction gases
and the silicon substrates were pre-deposited with titanium and carbon films
respectively. The cones were characterized by scanning electron microscopy
energy dispersive X-ray and micro-Raman spectroscopy. The results indicate that the cones are CN structure. The photoluminescence of CN cones was investigated by micro-Raman spectroscopy at room temperature and the photoluminescence spectrum showed three emission bands centered at about 621
643
726 nm
respectively. According to the photoluminescence mechanism of CN films
the photoluminescence of CN cones was analyzed.
关键词
Keywords
references
Gogotsi Y, Libera J A, Kalashnikov N, et al. Graphite polyhedral crystals [J]. Science, 2000, 290 (13):317-320.[2] Jang J, Chung S J, Kim H S, et al. Self-organized carbon nanotips [J]. Appl. Phys. Lett., 2001, 79 (11):1682-1684.[3] Wei J X, Liew K M, He X Q. Mechanical properties of carbon nanocones [J]. Appl. Phys. Lett., 2007, 91 (26):261906-1-3.[4] Zhang Guangyu, Jiang Xin, Wang Enge. Tubular graphite cones [J]. Science, 2003, 300 (5618):472-474.[5] Ostrikov K. Colloquium: Reactive plasmas as a versatile nanofabrication tool [J]. Rev. Mod. Phys., 2005, 77 (2):489-511.[6] Wang B B, Ostrikov K. Tailoring carbon nanotips in the plasma-assisted chemical vapor deposition: Effect of the process parameters [J]. J. Appl. Phys., 2009, 105 (8):083303-1-9.[7] Wang B B, Ostrikov K, Tsakadze Z L, et al. Analysis of photoluminescence background of Raman spectra of carbon nanotips grown by plasma-enhanced chemical vapor deposition [J]. J. Appl. Phys., 2009, 106 (1):013315-1-7.[8] Wang Biben, Dang Chun. Mechanism of photoluminescence from a-C:N:H nanotips [J]. Chin. J. Lumin.(发光学报), 2010, 31 (3):400-404 (in Chinese).[9] Wang B B, Zhang B. Effect of carbon film roughness on growth of carbon nanotip arrays by plasma-enhanced hot filament chemical vapor deposition [J]. Carbon, 2006, 44 (10):1949-1953.[10] Tsakadze Z L, Levchenko I, Ostrikov K, et al. Plasma-assisted self-organized growth of uniform nanocone arrays [J]. Carbon, 2007, 45 (10):2022-2030.[11] Casiraghi C, Piazza F, Ferrari A C, et al. Bonding in hydrogen diamond-like carbon by Raman spectroscopy [J]. Diam. Relat. Mater., 2005, 14 (3-7):1098-1102.[12] Ren Z M, Lu Y F, Ho D H K, et al. Raman spectroscopy studies of the influence of substrate temperature and ion beam energy on CNx thin films deposited by nitrogen-ion-assisted pulsed laser deposition [J]. Jpn. J. Appl. Phys. Part 1, 1999, 38 (8):4869-4862.[13] Zhang Shulin, Wang Xin, Ho Kousan, et al. Raman spectra in broad frequency region of p-type porous silicon [J]. J. Appl. Phys., 1994, 76 (5):3016-3019.[14] Zhang Xugang, Wu Qilin. Raman Spectroscopy Analysis and Application [M]. Beijing: National Defence Inudtry Press, 2008:5 (in Chinese).[15] Vlasov I I, Ralchenko V G, Goovaerts E, et al. Bulk and surface-enhanced Raman spectroscopy of nitrogen-doped ultrananocrystalline diamond films [J]. Phys. Stat. Sol., 2006, 203 (12):3028-3035.[16] Chakrabarti K, Basu M, Chaudhuri S, et al. Photoluminescence studies of DC plasma CVD grown a-C:H:N films [J]. Mater. Chem. Phys., 1999, 59 (1):69-74.[17] Anguita J V, Silva S R P, Young W. Photoluminescence from polymer-like hydrogenated and nitrogenated amorphous carbon films [J]. J. Appl. Phys., 2000, 88 (9):5175-5179.[18] Shen Xuechu. Semiconductor Spectra and Optical Properties [M]. Beijing: Science Press, 2002:303 (in Chinese).[19] Stewart A D G, Thompson M W. Microtopography of surface eroded by ion-bombardment [J]. J. Mater. Sci., 1969, 4 (1):56-60.[20] Silva S R P, Robertson, Amaratunga G A J, et al. Nitrogen modification of hydrogenated amorphous carbon films [J]. J. Appl. Phys., 1997, 81 (6):2626-2634.[21] Robertson J. Recombination and photoluminescence mechanism in hydrogenated amorphous carbon [J]. Phys. Rev. B, 1996, 53 (24):16302-16305.