ZHANG Wen-qiang, YAN Zu-wei. Binding Energies of Impurity States in a Strained Wurtzite GaN/Al<sub><em>x</em></sub>Ga<sub>1-<em>x</em></sub>N Cylindrical Quantum Dot Influenced by Hydrostatic Pressure[J]. Chinese Journal of Luminescence, 2011,32(2): 115-121
ZHANG Wen-qiang, YAN Zu-wei. Binding Energies of Impurity States in a Strained Wurtzite GaN/Al<sub><em>x</em></sub>Ga<sub>1-<em>x</em></sub>N Cylindrical Quantum Dot Influenced by Hydrostatic Pressure[J]. Chinese Journal of Luminescence, 2011,32(2): 115-121DOI:
Binding Energies of Impurity States in a Strained Wurtzite GaN/AlxGa1-xN Cylindrical Quantum Dot Influenced by Hydrostatic Pressure
a variational method is adopted to discuss the binding energies of hydrogenic impurity in a strained wurtzite cylindrical quantum dot by considering the hydrostatic pressure. The results indicate that the binding energies of hydrogenic impurity with strain effect are higher than that without strain effect when the quantum dot height is small
but the binding energies with strain effect become lower than that without strain effect as the quantum dot height increases. It is also found that the binding energies of hydrogenic impurity decrease when the mole fraction of Al increase. In addition
the bin-ding energies of impurity increase obviously with hydrostatic pressure
and the hydrostatic pressure has a remarkable influence on the donor binding energy for small quantum dot.
关键词
Keywords
references
Mayrock O, Wnsche H J, Henneberger F. Polarization charge screening and indium surface segregation in (In,Ga)N/GaN single and multiple quantum wells [J]. Phys. Rev. B, 2000, 62 (24):16870-16880.[2] Kang S W, Park H J, Won Y S, et al. Prevention of In droplets formation by HCl addition during metal organic vapor phase epitaxy of InN [J]. J. Appl. Phys. Lett., 2007, 90 (16):161126-1-3.[3] Pokatilov E P, Nika D L, Balandin A A. Built-in field effect on the electron mobility in AlN/GaN/AlN quantum wells [J]. Appl. Phys. Lett., 2006, 89 (11):113508-1-3.[4] Tchernycheva M, Nevou L, Doyennette L, et al. Systematic experimental and theoretical investigation of intersubband absorption in GaN/AlN quantum wells [J]. Phys. Rev. B, 2006, 73 (12):125347-1-11.[5] Xia C X, Wei S Y. Built-in electric field effect in wurtzite InGaN/GaN coupled quantum dots [J]. Phys. Lett. A, 2005, 346 (1-3):227-231.[6] Shi J J, Gan Z Z. Effects of piezoelectricity and spontaneous polarization on localized excitons in self-formed InGaN quantum dots [J]. J. Appl. Phys., 2003, 94 (1):407-415.[7] Zhang B, Yan Z W. Influence of strain on hydrogenic impurity states in a GaN/AlxGa1-xN quantum dot [J]. Opto electronics. Lett., 2009, 5 (2):85-88.[8] Chu H J, Chen J K, Wang J X. Advances in the study of properties and mechanics of semiconductor quantum dot structures [J]. Advances in Mechanics (力学进展), 2007, 37 (4):481-495 (in Chinese).[9] Oyoko H O, Duque C A, Montenegro N P. Uniaxial stress dependence of the binding energy of shallow donor impurities in GaAs-(Ga, Al)As quantum dots [J]. J. Appl. Phys., 2001, 90 (2):819-823.[10] Elabsy A M. Hydrostatic pressure dependence of binding energies for donors in quantum well heterostructures [J]. Phys. Scr., 1993, 48 (3):376-378.[11] Raigoza N, Morales A L, Montes A, et al. Stress effects on shallow-donor impurity states in symmetrical GaAs/AlxGa1-xAs double quantum wells [J]. Phys. Rev. B, 2004, 69 (4):045323-1-8.[12] Perez-Merchancano S T, Paredes-Gutierrez H, Silva-Valencia J. Hydrostatic-pressure effects on the donor binding energy in GaAs-(Ga,Al)As quantum dots [J]. J. Phys: Condens Matter., 2007, 19 (2):026225-1-6.[13] Ma B S, Wang X D, Su F H, et al. Photoluminescence from self-assembled long-wavelength InAs/GaAs quantum dots under pressure [J]. J. Appl. Phys, 2004, 95 (3):933-937.[14] Duque C A, Porras-Montenegro N, Barticevic Z, et al. Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots [J]. J. Phys.: Condens Matter., 2006, 18 (6):1877-1884.[15] Ha S H, Ban S L. Binding energies of excitons in a strained wurtzite GaN/AlGaN quantum well influenced by screening and hydrostatic pressure [J]. J. Phys.: Condens Matter., 2009, 20 (8):085218-1-7.[16] Charrour R, Bouhassoune M, Fliyou M, et al. Binding energy of hydrogenic impurities in polar cylindrical quantum dot [J]. J. Phys.: Condens Matter., 2002, 12 (22):4817-4827.[17] Perlin P, Mattos L, Shapiro N A, et al. Reduction of the energy gap pressure coefficient of GaN due to the constraining presence of the sapphire substrate [J]. J. Appl. Phys., 1999, 85 (4):2385-2389.[18] Wagner J M, Bechstedt F. Properties of strained wurtzite GaN and AlN: Ab initio studies [J]. Phys. Rev. B, 2002, 66 (11):115202-1-20.[19] Ting D Z Y, Chang Y C. -X mixing in GaAs/AlxGa1-xAs and AlxGa1-xAs/AlAs superlattices [J]. Phys. Rev. B,1987, 36 (8):4359-4374.[20] Holtz M, Seon M, Brafman O, et al. Pressure dependence of the optical phonon energies in AlxGa1-xAs [J]. Phys. Rev. B, 1996, 54 (12):8714-8720.[21] epkowski S P, Teisseyre H, Suski T, et al. Piezoelectric field and its influence on the pressure behavior of the light emission from GaN/AlGaN strained quantum wells [J]. Appl. Phys. Lett., 2001, 79 (10):1483-1485.[22] Bernardini F, Fiorentini V. Spontaneous polarization and piezoelectric constants of Ⅲ-Ⅴ nitrides [J]. Phys. Rev. B, 1997, 56 (16):10024-10027.[23] Vaschenko G, Patel D, Menoni C S, et al. Significant strain dependence of piezoelectric constants in InxGa1-xN/GaN quantum wells [J]. Phys. Rev. B, 2001, 64 (24):241308-1-4.[24] Raigoza N, Duque C A, Porras-Montenegro N, et al. Correlated electron hole transition energies in quantum-well wires: Effects of hydrostatic pressure [J]. Physica B, 2006, 371 (1):153-157.[25] Zhang Min, Yan Zuwei. Interface effect on the impurity state in a GaN/Ga1-xAlxN quantum dot under pressure [J]. Chin. J. Lumin. (发光学报), 2009, 30 (4):529-535 (in Chinese).
Historical Evolution and Current Status of Key Materials and Technologies in Inkjet-printed Quantum Dot Electroluminescent Displays
Research Progresses on Infrared Superluminescent Diodes
Progress on Modulation Bandwidth of Quantum-dot LED in Visible Light Communication
Synthesis and Conversion Efficiency Optimization of Quantum Dots Layer for Full-color Micro-LED Display
Design and Performance of Quantum Dot Light-emitting Diode Based on TiO2 Modified Layer
Related Author
LUO Xin
SUN Zhiguo
XU Bo
LIU Chen
WEI Changting
ZENG Haibo
YANG Jinghang
YAN Changling
Related Institution
School of Chemistry and Chemical Engineering, Anshun University
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Engineering Research Center for Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology
State Key Laboratory on High-power Semiconductor Lasers, Changchun University of Science and Technology
Department of Electrical and Electronic Engineering, College of Engineering, Southern University of Science and Technology
Technology Development Centre, Shenzhen Research Institute of Guangdong Ocean University