DING Wei-jia, ZHANG Mei, WANG Jing, SU Qiang. Luminescence Properties of New Ca<sub>5</sub>(SiO<sub>4</sub>)<sub>2</sub>F<sub>2</sub> ∶ Eu<sup>2+</sup> Green Phosphors for White LEDs[J]. Chinese Journal of Luminescence, 2011,32(3): 256-261
DING Wei-jia, ZHANG Mei, WANG Jing, SU Qiang. Luminescence Properties of New Ca<sub>5</sub>(SiO<sub>4</sub>)<sub>2</sub>F<sub>2</sub> ∶ Eu<sup>2+</sup> Green Phosphors for White LEDs[J]. Chinese Journal of Luminescence, 2011,32(3): 256-261DOI:
Luminescence Properties of New Ca5(SiO4)2F2 ∶ Eu2+ Green Phosphors for White LEDs
摘要
采用高温固相法合成出系列绿色Ca
5-
x
Eu
x
(SiO
4
)
2
F
2
荧光粉
并对其发光特性进行了研究。Eu
2+
离子在Ca
5
(SiO
4
)
2
F
2
基质中可被250~440 nm光有效激发发出绿光
适合作为 UV-LED用绿色荧光粉。浓度猝灭实验结果表明
Eu
2+
离子的最佳掺杂摩尔分数为0.15
通过计算推测出Eu
2+
离子在Ca
5-
x
Eu
x
(SiO
4
)
2
F
2
中的能量转移机制应该为偶极-偶极相互作用。温度猝灭特性表明
450 K时的发射强度约为10 K时的35%。不同温度下Eu
2+
离子的荧光寿命结果表明
随着温度的不断升高
荧光寿命不断缩短。
Abstract
A series of new green-emitting phosphors
Eu
2+
-activated Ca
5-
x
Eu
x
(SiO
4
)
2
F
2
were synthesized at 1 223 K by conventional high-temperature solid-state reactions under reductive atmosphere. And the photoluminescence excitation
diffuse reflectance and emission spectra
concentration quenching process
temperature dependence of luminescence and lifetime of phosphors were systematically investigated. The excitation spectrum shows that Ca
5
(SiO
4
)
2
F
2
∶ Eu
2+
can be efficiently excited by the incident lights of 250~440 nm
perfectly matching with the emissions wavelength of near-UV LEDs. The emission intensity is influenced by the Eu
2+
content
and the optimal doping mole fraction is about 0.15. The concentration quenching mechanism was verified as dipole-dipole interaction and the value of the critical transfer distance was calculated as 1.5 nm. The temperature dependent emission spectra in the temperature range of 10~450 K show that the emission intensity at 450 K is 35% of the emission intensity at 10 K. At room temperature
the lifetimes of Eu
2+
ions in Ca
4.85
Eu
0.15
(SiO
4
)
2
F
2
phosphors are determined to be 1.78 s and 7.79 s
respectively. All of these indicate that Ca
5
(SiO
4
)
2
F
2
∶ Eu
2+
is a promising green phosphor candidate for phosphor-converted white LEDs.
关键词
Keywords
references
Mueller M R, Mueller G O, Krames M R, et al. High-power phosphor-converted light-emitting diodes based on III-nitrides[J]. IEEE J. Select. Top. Quant. Elect., 2002, 8 (2):339-345.[2] Narukawa Y, Narita J, Sakamoto T, et al. Recent progress of high efficiency white LEDs [J]. Phys. Status Solidi(a), 2007, 204 (6):2087-2093.[3] Kim J S, Jeon P E, Park Y H, et al. White-light generation through ultraviolet- emitting diode and white-emitting phosphor [J]. Appl. Phys. Lett., 2004, 85 (17):3696-3698.[4] Park J K, Kim C H, Park S H, et al. Application of strontium silicate yellow phosphor for white light-emitting diodes [J]. Appl. Phys. Lett., 2004, 84 (10):1647-1649.[5] Sang Shiyun, Wang Xifeng, Xia Wei, et al. Preparation and encapsulation characteristics of silicate-based phosphor for white-light-emitting LED [J]. Appl. Phys. Lett. (发光学报), 2009, 30 (4):503-508 (in Chinese).[6] Gao Fei, Liang Lifang, Guo Chongfeng. Preparation and luminescence of red ligth-emitting phosphors based on Li3Ba2Ln3-xEux(MoO4)8 by sol-gel method [J]. Chin. J. Lumin. (发光学报), 2009, 30 (5):610-616 (in Chinese).[7] Zhang Mei, Ding Weijia, Wang Jing, et al. Optical properties of Sr1-yEuySi2O2-zN2+2z/3 phosphors and their applications in white LED [J]. Chin. J. Lumin.(发光学报), 2010, 31 (1):31-38 (in Chinese).[8] Sheu J K, Chang S J, Kuo C H, et al. White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red [J]. IEEE Photon. Technol. Lett., 2003, 15 (1):18-20.[9] Neeraj S, Kijima N, Cheetham A K. Novel red phosphors for solid-state lighting: the system NaM(WO4)2-x(MoO4)x ∶ Eu3+(M=Gd, Y, Bi) [J]. Chem. Phys. Lett., 2004, 387 (1-3):2-6.[10] Yang M, Zhang S Y. The relationship between chemical bond properties and stokes shift of Eu2+ in some silicate host lattices [J]. J. Phys. Chem. Solids, 2003, 64 (2):213-221.[11] IJdo D J W, Jansen J, Schipper W J. The crystal structure of barium bromide silicate(Ba5SiO4Br6) [J]. Materials Research Bulletin, 1992, 27 (1):45-51.[12] Wang J, Li G, Tian S, et al. The composition, luminescence, and structure of Sr8 Cl8 ∶ Eu2+ [J]. Materials Research Bulletin, 2001, 36 (11):2051-2057.[13] Wang H Q, Huang J G, Yu X H, et al. Structure and luminescence properties of alkaline earth chlorosilicates [J]. J. Luminescence, 1988, 40-41 :893-894.[14] Zeng Q H, Tanno H, Egoshi K, et al. Ba5SiO4Cl6 ∶ Eu2+:An intense blue emission phosphor under vacuum ultraviolet and near-ultraviolet excitation [J]. Appl. Phys. Lett., 2006, 88 (5):051906-1-3.[15] Gutt W H, Osborne G J. System 2CaOSiO2-CaF2 [J]. Transactions of the British Ceramic Society, 1966, 65 (9):521-534.[16] Lin H, Zhang X, Huang L H, et al. Luminescent properties of Ce3+-doped halogenosilicate Ca5(SiO4)2X2 [J]. J. Chin. Rare Earth Soc. (中国稀土学报), 1998, 16 (11):1036-1038 (in Chinese).[17] Blasse G. Energy transfer in oxidic phosphors [J]. Philips Res. Repts., 1969, 24 (2):131-144.[18] Dexter L. A theory of sensitized luminescence in solid [J]. J. Chem. Phys., 1953, 21 (5):836-838.[19] Van Uitert L G. Characterization of energy transfer interactions between rare earth ions [J]. J. Electrochem. Soc., 1967, 114 (10):1048-1053.[20] Ozawa L, Jaffe P M. The mechanism of the emission color shift with activator concentration in Eu3+ activated phosphors [J]. J. Electrochem. Soc., 1971, 118 (10):1678-1679.[21] Zhang X X, Xie G W, Shi J X, et al. Enhanced 1.54 m luminescence from erbium and yttrium co-doped porous silicon [J]. Acta Chimica Sinica (化学学报), 2003, 61 (9):1430-1433 (in Chinese).
Luminescence Properties and Application of Ce3+ Doped Ba3Y2(BO3)4 Phosphor
Research Progress in Photoluminescent Aerogels
Advance in Mn4+-doped Oxyfluoride Red-emitting Phosphors for WLED
Improving Moisture Resistance of K2SiF6∶Mn4+via Passivation Effect of Lactobionic Acid
Rare Earth Ion Doped Perovskite Nanocrystals
Related Author
SUN Xiaoyuan
LIU Chunmiao
LI Min
TIAN Wanlu
LOU Wenjing
LI Haoxiang
TAN Qinqin
LI Cheng
Related Institution
Department of Physics, Changchun Normal University
Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
School of Flexible Electronics(Future Technologies) & Institute of Advanced Materials(IAM), Nanjing Tech University
School of Energy and Engineer, Jiangxi University of Science and Technology
College of Chemistry and Chemical Engineering, Hunan Normal University