LIU Chun-xu, WANG Peng-cheng, LUO Yong-shi, WANG Li-jun. Tb<sup>3+</sup> -Er<sup>3+</sup> Couples as Spectral Converters in NaYF<sub>4</sub> for GaAs Solar Cells[J]. Chinese Journal of Luminescence, 2011,32(11): 1120-1125
LIU Chun-xu, WANG Peng-cheng, LUO Yong-shi, WANG Li-jun. Tb<sup>3+</sup> -Er<sup>3+</sup> Couples as Spectral Converters in NaYF<sub>4</sub> for GaAs Solar Cells[J]. Chinese Journal of Luminescence, 2011,32(11): 1120-1125DOI:
Tb3+ -Er3+ Couples as Spectral Converters in NaYF4 for GaAs Solar Cells
In order to reduce thermal loss due to spectral mismatch of the solar cell absorption
the quantum cutting with Tb
3+
-Er
3+
couples as spectral converters is experimentally observed. One high energy ultraviolet photon(
7
F
6
5
L
1
of Tb
3+
) is quantumly cut into two lower energy photons:one is in near-infrared(
4
I
9/2
4
I
15
of Er
3+
) and the other in blue region(
5
D
4
7
F
6
of Tb
3+
)
both of which can be efficiently absorbed by solar cells. A quantum efficiency
QE
of up to 188% is calculated which is close to the theoretical limit of 200%. The energy mismatch in the energy transfer from Tb
3+
(
5
L
1
5
D
4
)to Er
3+
(
4
I
9/2
4
I
15/2
) is 237 cm
-1
less than a phonon energy of 400 cm
-1
in NaYF
4
making the energy transfer nearly resonant. The energy migration among Tb
3+
donors is treated approximately by the diffusion model and the initial process of energy transfer among the Tb
3+
-Er
3+
couples is found to be dipole-dipole interactions.
关键词
Keywords
references
Crabtree G W, Lewis N S. Solar energy conversion [J]. Phys. Today, 2007, 60 (3):37-42.[2] Richard B S. Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers [J]. Sol. Energy Mater., 2006, 90 (3):2329-2337.[3] Van der Ender B M, Aarts L, Meijerink A. Lanthanide ions as spectral converters for solar cells[J]. Phys. Chem. Chem. Phys., 2009, 11 (7):11081-11095.[4] Timmerman D, Izeddin I, Stallinga P, et al. Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications [J]. Nature Photonics, 2008, 2 (2):105-109.[5] Dexter D L. Possibility of luminescent quantum yields greater than unity [J]. Phys. Rev., 1957, 108 (3):630-633.[6] Trupke T, Green M, Wrfel P. Improving solar cell efficiency by downconversion of high-energy photons [J]. Appl. Phys., 2002, 92 (3):1668-1674.[7] Vergeer P, Vlugt T, Kox M, et al. Quantum cutting by cooperative energy transfer in YbxY1-xPO4∶Tb [J]. Phys. Rev. B, 2005, 71 (4):014119-1-11.[8] Zhang Q Y, Yang C H, Pan Y X. Cooperative quantum cutting in one-dimensional (YbxGd1-x)Al3(BO3)4∶Tb3+ nanorods [J]. Appl. Phys. Lett., 2007, 90 (2):021107-1-3.[9] Ye S, Zhu B, Chen J, et al. Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals [J]. Appl. Phys. Lett., 2008, 92 (41):141112-1-3.[10] Lakshminarayana G, Qiu J. Near-infrared quantum cutting in RE3+/Yb3+(RE=Pr, Tb, and Tm):GeO2-B2O3-ZnO-LaF3 glasses via downconversion [J]. J. Alloys Compd., 2009, 481 (2):582-589.[11] Ye S, Zhu B, Luo J. Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals [J]. Opt. Express, 2008, 16 (12):8989-8994.[12] Lakshminarayana G, Yang H, Ye S, et al. Co-operative downconversion luminescence in Tm3+/Yb3+∶SiO2-Al2O3-LiF-GdF3 glasses [J]. J. Phys. D: Appl. Phys., 2008, 41 (17):175111-1-6.[13] Zhang Q Y, Yang G F, Jiang Z H. Cooperative downconversion in GdAl3(BO3)4∶RE3+, Yb3+(RE=Pr, Tb, and Tm) [J]. Appl. Phys. Lett., 2007, 91 (5):051903-1-3.[14] Chen D, Wang Y, Yu Y, et al. Near-infrared quantum cutting in transparent nanostructured glass ceramics [J]. Opt. Lett., 2008, 33 (16):1884-1886.[15] Van der Ende B M, Aarts L, Meijerink A. Near-infrared quantum cutting for photovoltaics [J]. Adv. Mater., 2009, 21 (1):4-5.[16] Aarts L, Van der Ende B M, Meijeriink A. Downconversion for solar cells in NaYF4∶Er, Yb [J]. J. Appl. Phys., 2009, 106 (2):023522-1-3.[17] Meijer J, Aarts L, Van der Ende B M, et al. Downconversion for solar cells in YF3∶Nd3+, Yb3+ [J]. Phys. Rev. B, 2010, 81 (3):035107-1-9.[18] Zhang Q Y, Huang X Y. Recent progress in quantum cutting phosphors [J]. Progress in Materials Science, 2010, 55 (5):353-427.[19] Kushida T. Energy transfer cooperative optical transitions in rare-earth doped inorganic materials. Ⅲ. Dominant transfer mechanism [J]. J. Phys. Soc. Jpn., 1973, 34 (3):1334-1337.[20] Burshtein A I. Energy transfer kinetics in disordered systems [J]. J. Lumin., 1985, 34 (2):167-188.[21] de Vries A J, Minks B P, Blasse G. Evaluation of energy migration in GdAl3B4O12 [J]. J. Lumin., 1988, 39 (1):153-160.[22] Solovieva N, Nikl M, Nitsch K. Energy migration in the Ce3+ -doped Na-Gd phosphate glasses [J]. Opt. Mater., 2007, 30 (1):113-115.[23] Liu Chunxu, Liu Junye, Zhang Jisen, et al. Tb3+-Er3+ couples as spectral converters in NaYF4 for GaAs solar cells [J]. J. Phys. D: Appl. Phys., 2011, 44 (14):145502-145507.