LI Bing-hui, YAO Bin, LI Yong-feng, DENG Rui, LIU Wei-wei, SHAN Chong-xin, ZHANG Ji-ying, SHEN De-zhen. U ltraviolet Electroluminescence from ZnO-based Heterojunction Light-emitting Diodes Fabricated on p-GaAs Substrate[J]. Chinese Journal of Luminescence, 2010,31(6): 854-858
LI Bing-hui, YAO Bin, LI Yong-feng, DENG Rui, LIU Wei-wei, SHAN Chong-xin, ZHANG Ji-ying, SHEN De-zhen. U ltraviolet Electroluminescence from ZnO-based Heterojunction Light-emitting Diodes Fabricated on p-GaAs Substrate[J]. Chinese Journal of Luminescence, 2010,31(6): 854-858DOI:
U ltraviolet Electroluminescence from ZnO-based Heterojunction Light-emitting Diodes Fabricated on p-GaAs Substrate
ZnO-based heterojunction light-emitting diodes have been fabricated on p-type GaAs substrate by plasma-assisted molecular beam expitaxy. An electron-blocking MgO layer between thin ZnO film and p-GaAs substrate plays a key role in improving performance of the diodes. Comparing with the n-ZnO/p-GaAs heterojunction
the ZnO/MgO/p-GaAs heterojunction shows a typical diode characteristic with a forward threshold voltage of 3 V. Electroluminescence measurement indicates that the ZnO/MgO/p-GaAs heterojunction has a visible emission band attributed to the defect-related recombination in the ZnO layer and an ultraviolet emission peak.
关键词
Keywords
references
Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J]. Nat. Mater., 2005, 4 (1):42-46.[2] Ryu Y R, Lubguban J A, Lee T S, et al. Excitonic ultraviolet lasing in ZnO-based light emitting devices [J]. Appl. Phys. Lett., 2007, 90 (13):131115-1-3.[3] Li Y, Yao B, Deng R, et al. Ultraviolet photodiode based on p-Mg0.2Zn0.8O/n-ZnO heterojunction with wide response range [J]. J. Phys. D: Appl. Phys., 2009, 42 (10):105102-1-4.[4] Sun J, Lu Y, Liu Y, et al. Nitrogen-related recombination mechanisms in p-type ZnO films grown by plasma-assisted molecular beam epitaxy [J]. J. Appl. Phys., 2007, 102 (4):043522-1-6.[5] Look D, Reynolds D, Litton C, et al. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J]. Appl. Phys. Lett., 2002, 81 (10):1830-1832.[6] Xiu F, Yang Z, Mandalapu L, et al. p-type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy [J]. Appl. Phys. Lett., 2006, 88 (5):052106-1-3.[7] Ryu Y, Lee T, Lubguban J, et al. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes [J]. Appl. Phys. Lett., 2006, 88 (24):241108-1-3.[8] Mandalapu L, Xiu F, Yang Z, et al. p-type behavior from Sb-doped ZnO heterojunction photodiodes [J]. Appl. Phys. Lett., 2006, 88 (11):112108-1-3.[9] Mandalapu L, Yang Z, Xiu F, et al. Homojunction photodiodes based on Sb-doped p-type ZnO for ultraviolet detection [J]. Appl. Phys. Lett., 2006, 88 (9):092103-1-3.[10] Asil H, Gr Emre, inar K, et al. Electrochemical growth of n-ZnO onto the p-type GaN substrate: p-n heterojunction characteristics [J]. Appl. Phys. Lett., 2009, 94 (25):253501-1-3.[11] Yu Q, Xu B, Wu Q, et al. Optical properties of ZnO/GaN heterostructure and its near-ultraviolet light-emitting diode [J]. Appl. Phys. Lett., 2003, 83 (23):4713-4715.[12] Reddy N, Ahsanulhaq Q, Kim J, et al. Behavior of n-ZnO nanorods/p-Si heterojunction devices at higher temperatures [J]. Appl. Phys. Lett., 2008, 92 (4):043127-1-3.[13] Chen X, Ling C, Fung S, et al. Current transport studies of ZnO/p-Si heterostructures grown by plasma immersion ion implantation and deposition [J]. Appl. Phys. Lett., 2006, 88 (13):132104-1-3.[14] Ye J, Gu S, Zhu S, et al. Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions [J]. Appl. Phys. Lett., 2006, 88 (18):182112-1-3.[15] Long H, Fang, G, Huang, H, et al. Ultraviolet electroluminescence from ZnO/NiO-based heterojunction light-emitting diodes [J]. Appl. Phys. Lett., 2009, 95 (1):013509-1-3.[16] Deng R, Yao B, Li Y, et al. X-ray photoelectron spectroscopy measurement of n-ZnO/p-NiO heterostructure valence-band offset [J]. Appl. Phys. Lett., 2009, 94 (2):022108-1-3.[17] Zhang P, Liu X L, Zhang R, et al. Valence band offset of ZnO/GaAs heterojunction measured by X-ray photoelectron spectroscopy [J]. Appl. Phys. Lett., 2008, 92 (1):012104-1-3.[18] Zhu H, Shan C, Li B, et al. Ultraviolet electroluminescence from MgZnO-based heterojunction light-emitting diodes [J]. J. Phys. Chem. C, 2009, 113 (7):2980-2982.[19] Long H, Fang G, Huang H, et al. Ultraviolet electroluminescence from ZnO/NiO-based heterojunction light-emitting diodes [J]. Appl. Phys. Lett., 2009, 95 (1):013509-1-3.[20] Sun J, Zhao J, Liang H, et al. Realization of ultraviolet electroluminescence from ZnO homojunction with n-ZnO/p-ZnO ∶ As/GaAs structure [J]. Appl. Phys. Lett., 2007, 90 (12):121128-1-3.[21] Aoki T, Hatanaka Y, Look D, et al. ZnO diode fabricated by excimer-laser doping [J]. Appl. Phys. Lett., 2000, 76 (22):3257-3258.[22] Chen P, Ma X, Yang D. Ultraviolet electroluminescence from ZnO/p-Si heterojunctions [J]. J. Appl. Phys., 2007, 101 (5):053103-1-4.[23] Aranovich J, Golmayo D, Fahrenbruch A, et al. Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis [J]. J. Appl. Phys., 1980, 51 (8):4260-4268.[24] Yamashita J. Oxygen band in magnesium oxide [J]. Phys. Rev., 1958, 111 (3):733-735.[25] Sze S. Physics of Semiconductor Devices [M]. 2nd ed, New York: Wiley, 1981, Appendix H.850.
Enhanced Electroluminescence Properties of Tin-based Perovskites by Vitamin C Additives
Efficient and Stable Broadband Luminescence in Antimony-doped Hybrid Chloride Single Crystals for Full-spectrum LED Application
Research Progress on High-efficiency Lead-based Perovskite Green Light-emitting Diodes: Material Synthesis and Device Optimization
Research Progress of Neutral Blue Iridium Complexes in OLEDs
Related Author
SHI Junjun
BAI Wenhao
WANG Ruonan
XUAN Tongtong
XIE Rongjun
XUAN Tongtong
XIE Rong-Jun
MA Han
Related Institution
Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University
Shenzhen Research Institute, Xiamen University
State Key Laboratory of Physical Chemistry of Solid Surfaces
Key Laboratory of Green Chemistry Materials in University of Yunnan Province, Yunnan Key Laboratory of Chiral Functional Substance Research and Application, School of Chemistry and Environment, Yunnan Minzu University
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology