LIU Chun-xu, WANG Yang, ZHANG Ji-sen, WANG Peng-cheng, LUO Yong-shi, WANG Li-jun. Energy Transfer of Tm<sup>3+</sup>-Er<sup>3+</sup> Couples in NaYF<sub>4</sub> Microcrystals[J]. Chinese Journal of Luminescence, 2010,31(6): 812-815
LIU Chun-xu, WANG Yang, ZHANG Ji-sen, WANG Peng-cheng, LUO Yong-shi, WANG Li-jun. Energy Transfer of Tm<sup>3+</sup>-Er<sup>3+</sup> Couples in NaYF<sub>4</sub> Microcrystals[J]. Chinese Journal of Luminescence, 2010,31(6): 812-815DOI:
Energy Transfer of Tm3+-Er3+ Couples in NaYF4 Microcrystals
Energy up- and down-conversions are two efficient methods to resolve spectral mismatch. This paper reports down-conversions in solar cells based GaAs. The energy is transfered from Tm
3+
1
I
6
1
G
4
749 nm (13 356 cm
-1
) transition to Er
3+
4
I
9/2
4
I
15/2
796 nm (12 563 cm
-1
) by the cross relaxations
under excitation of Tm
3+
3
H
6
1
I
6
294 nm (34 364 cm
-1
)
where the
1
G
4
level is used as an intermediate state. Then a high energy ultraviolet photon 294 nm can be cut into a near infrared 796nm photon and a blue 476 nm photon. Energy transfer efficiency and quantum cutting efficiency were estimated with experimental data. The spectral mismatch can be improved by the quantum cutting to enhance the conversion efficiency of solar cells.
关键词
Keywords
references
Crabtree G W, Lewis N S. Solar energy conversion [J]. Phys. Today, 2007, 60 (3):37-42.[2] Richard B S. Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers [J]. Sol. Energy Mater., 2006, 90 (3):2329-2337.[3] Van der Ender B M, Aarts L, Meijerink A. Lanthanide ions as spectral converters for solar cells [J]. Phys. Chem. Chem. Phys., 2009, 11 (7):44084-44095.[4] Timmerman D, Izeddin I, Stallinga P, et al. Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications [J]. Nature Photonics, 2008, 2 (2):405-409.[5] Dexter D L. Possibility of luminescent quantum yields greater than unity [J]. Phys. Rev., 1957, 108 (3):630-633.[6] Trupke T, Green M, Wrfel P. Improving solar cell efficiency by downconversion of high-energy photons[J]. J. Appl. Phys., 2002, 92 (3):4668-4674.[7] Vergeer P, Vlugt T, Kox M, et al. Quantum cutting by cooperative energy transfer in YbxY4-xPO4 ∶ Tb[J]. Phys. Rev. B, 2005, 71 (4):044449-1-11.[8] Zhang Q Y, Yang C H, Pan Y X. Cooperative quantum cutting in one-dimensional (YbxGd4-x)Al3(BO3)4 ∶ Tb3+ nanorods [J]. Appl. Phys. Lett., 2007, 90 (2)024407-1-3.[9] Ye S, Zhu B, Chen J, et al. Infrared quantum cutting in Tb3+ , Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals [J]. Appl. Phys. Lett., 2008, 92 (41):411112-1-3.[10] Lakshminarayana G, Qiu J. Near-infrared quantum cutting in RE3+/Yb3+ (RE=Pr, Tb, and Tm): GeO2-B2O3-ZnO-LaF3 glasses via downconversion [J]. J. Alloys Compd., 2009, 481 (2):582-589.[11] Ye S, Zhu B, Luo J, et al. Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals [J]. Opt. Express, 2008, 16 (12):8989-8994.[12] Lakshminarayana G, Yang H, Ye S, et al. Co-operative downconversion luminescence in Tm3+/Yb3+ ∶ SiO2-Al2O3-LiF-GdF3 glasses [J]. J. Phys. D: Appl. Phys., 2008, 41 (17):175111-1-6.[13] Zhang Q Y, Yang G F, Jiang Z H. Cooperative downconversion in GdAl3(BO3)4 ∶ RE3+ , Yb3+ (RE= Pr, Tb, and Tm)[J]. Appl. Phys. Lett., 2007, 91 (5):054903-1-3.[14] Chen D, Wang Y, Yu Y, et al. Near-infrared quantum cutting in transparent nanostructured glass ceramics [J]. Opt. Lett., 2008, 33 (16):4884-4886.[15] Van der Ende B M, Aarts L, Meijerink A. Near-infrared quantum cutting for photovoltaics [J]. Adv. Mater., 2009, 21 (1):4-5.[16] Aarts L, Van der Ende B M, Meijeriink A. Downconversion for solar cells in NaYF4 ∶ Er, Yb [J]. J. Appl. Phys., 2009, 106 (2):023522-1-3.[17] Meijer J, Aarts L, Van der Ende B M, et al. Downconversion for solar cells in YF3 ∶ Nd3+ , Yb3+[J]. Phys. Rev. B, 2004, 81 (3):035407-1-9.[18] Zhang Q Y, Huang X Y. Recent progress in quantum cutting phosphors [J]. Progress in Material Science, 2010, 55 (5):353-427.
Progress of Two-dimensional Perovskite Solar Cells Based on Aromatic Organic Spacers
Research Progress of Pr3+ Activated Laser Crystals in Visible Region
Progress of Lead-free Perovskite Photovoltaic Materials and Devices
Spectra Control of Perovskite Luminescence and Optoelectronic Devices
Related Author
CAO Shishuang
WANG Baoning
LI Lin
GAO Yuping
WANG Rui
LIU Yongsheng
XU Chong-lei
MA Feng-kai
Related Institution
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University
Institute of Polymer Chemistry, College of Chemistry, Nankai University
School of Physics Science and Engineering, Tongji University
Department of Optoelectronic Engineering, College of Science & Engineering, Jinan University
State Key Laboratory of High-performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences