ZHENG Jin-ju, ZHENG Zhu-hong. An Inerratic Variation of Nonlinear Coefficient with Temperature in CdSe/ZnSe Self-assembled Quantum Dots[J]. Chinese Journal of Luminescence, 2010,31(6): 836-841
ZHENG Jin-ju, ZHENG Zhu-hong. An Inerratic Variation of Nonlinear Coefficient with Temperature in CdSe/ZnSe Self-assembled Quantum Dots[J]. Chinese Journal of Luminescence, 2010,31(6): 836-841DOI:
An Inerratic Variation of Nonlinear Coefficient with Temperature in CdSe/ZnSe Self-assembled Quantum Dots
We have investigated the excitation-intensity-dependent optical properties of CdSe/ZnSe self-assembled quantum dots (QDs) at different temperature. When excitation intensity (
I
) is varied by three orders of magnitude
the photoluminescence (PL) morphology and peak positions appear to be independent on excitation intensity.The nonlinear coefficient
k
obtained by a relation of
LI
k
in the temperature ranges of 21~300 K shows regularity which is described in three temperature regions:
k
is close to 1
when the temperature is below 120 K
it slightly decreases with increasing temperature in ranges of 120~200 K and it rapidly decreases from 0.946 to 0.870 with the temperature in the ranges of 200~300 K. Taking the temperature dependence of PL into account
we have confirmed that the bound excitonic recombination is a dominant recombination mechanism below 120 K. The nonlinear coefficient
k
monotonously decreases in the temperature ranges of 120~300 K
which is attributed to increasing transition from free-to-bound (FB) exciton with increasing temperature. Furthermore
the temperature dependence of integrated PL intensity reveals that defects and dislocations in the material provide nonradiative channels to quench the luminescence.
关键词
Keywords
references
Ko H C, Park D C, Kawakami K, et al. Self-organized CdSe quantum dots onto cleaved GaAs (110) originating from Stranski-Krastanow growth mode [J]. Appl. Phys. Lett., 1997, 70 (24):3278-3280.[2] Zheng J J, Zheng Z H, Gong W W, et al. Abnormal temperature behavior of photoluminescence in CdSe/ZnSe self-assembled quantum dots [J]. Sol. Stat. Commun., 2008, 147 (11-12):429-432.[3] Zheng Z H, Okamoto K. Narrow luminescence lines from self-assembled CdSe quantum dots at room temperature [J]. Appl. Phys. Lett., 2001, 78 (3):297-299.[4] Stier O, Grundmann M, Bimberg D. Electronic and optical properties of strained quantum dots modeled by 8-band kp theory [J]. Phys. Rev. B, 1999, 59 (8):5688-5701.[5] Pryor C, Flatte M. Accuracy of circular polarization as a measure of spin polarization in quantum dot qubits [J]. Phys.Rev. Lett., 2003, 91 (25):257901-1-4.[6] Hogele A, Seidl S, Kroner M, et al. Voltage-controlled optics of a quantum dot [J]. Phys. Rev. Lett., 2004, 93 (21):217401-1-4.[7] Michler P. Single Quantum Dots: Fundamentals, Applications and New Concepts [M]. Berlin: Springer, 2003.[8] Tang S F, Chiang C D, Weng P K, et al. Interferometric analog-to-digital conversion scheme [J]. IEEE Photonics Tech-nol. Lett., 2006, 18 (8):986-988.[9] Regelman D V, Mizrahi U, Gershoni D, et al. Semiconductor quantum dot: A quantum light source of multicolor photons with tunable statistics [J]. Phys. Rev. Lett., 2001, 87 (25):257401-1-4.[10] Strauf S, Hennessy K, Rakher M T. Self-tuned quantum dot gain in photonic crystal lasers [J]. Phys. Rev. Lett., 2006, 96 (12):127404-1-4.[11] He J, Krenner H J, Pryor C, et al. Growth, structural, and optical properties of self-assembled (In,Ga)As quantum posts on GaAs [J]. Nano Lett., 2007, 7 (3):802-806.[12] Gao W, Zheng Z H, Zheng J J, et al. Photoluminescence of CdSe/ZnSe asymmetric quantum wells [J]. Chin. J. Lumin. (发光学报), 2007, 28 (6):907-912 (in Chinese).[13] Hu X B, Zheng Z H, Zheng J J, et al. Photoluminescence of self-assembled CdSe quantum dots with different thickness CdSe quantum well layers [J]. Chin. J. Lumin. (发光学报), 2008, 29 (5):724-728 (in Chinese).[14] Rosen D L, Li Q X, Alfano R R, et al. Native defects in undoped semi-insulating CdSe studied by photoluminescence and absorption [J]. Phys. Rev. B, 1985, 31 (4):R2396-R2403.[15] Furdyna J K, Lee S. Optical properties of self-assembled Ⅱ-Ⅵ quantum dots [J]. SPIE, 1998, 3283 :774-784.[16] Schmidt T, Lischka K. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors [J]. Phys. Rev. B, 1992, 45 (16):R8989-8994.[17] Wachter S, Don D D, Schmidt M, et al. Relaxation of localized excitons in CdSe/ZnSe heterostructures containing quantum islands of different sizes [J]. Phys. Stat. Sol. (b), 2001, 224 (2):437-441.[18] Wang F Z, Chen Z H. The micro-photoluminescence and micro-Raman study of Zn1-xCdx Se quantum islands (dots) in CdSe/ZnSe heterostructure [J]. Acta Physica Sinica (物理学报), 2006, 55 (5):2628-2632 (in Chinese).[19] Karczewski G, Mackowski S, Kutrowski M, et al. Photoluminescence study of CdTe/ZnTe self-assembled quantum dots [J]. Appl. Phys. Lett., 1999, 74 (20):3011-3013.[20] Bauknecht A, Siebentritt S, Albert J. Radiative recombination via intrinsic defects in CuxGaySe2 [J]. J. Appl. Phys., 2001, 89 (8):4391-4440.[21] Schairer W, Schmidt M. Strongly quenched deformation potentials of the Mn acceptor in GaAs [J]. Phys. Rev. B, 1974, 10 (6):R2501-2506.[22] Mayer H, Rssler U, Wolf K, et al. Strain splitting of nitrogen acceptor levels in ZnSe [J]. Phys. Rev. B, 1995, 52 (7):4956-4964.