Stimulated Emission Property of Novel ZnO Nanoneedle Pumped by Two-photon
paper|更新时间:2020-08-12
|
Stimulated Emission Property of Novel ZnO Nanoneedle Pumped by Two-photon
Chinese Journal of LuminescenceVol. 31, Issue 1, Pages: 109-113(2010)
作者机构:
1. 中山大学 光电材料与技术国家重点实验室,广东 广州,510275
2. 中山大学 化学与化工学院,广东 广州,510275
作者简介:
基金信息:
DOI:
CLC:O482.31
Received:10 September 2009,
Revised:02 January 1900,
Published Online:20 February 2010,
Published:20 February 2010
稿件说明:
移动端阅览
JIANG Xiao-fang, LI Xiao-long, CAO Jun-feng, et al. Stimulated Emission Property of Novel ZnO Nanoneedle Pumped by Two-photon[J]. Chinese journal of luminescence, 2010, 31(1): 109-113.
DOI:
JIANG Xiao-fang, LI Xiao-long, CAO Jun-feng, et al. Stimulated Emission Property of Novel ZnO Nanoneedle Pumped by Two-photon[J]. Chinese journal of luminescence, 2010, 31(1): 109-113.DOI:
Stimulated Emission Property of Novel ZnO Nanoneedle Pumped by Two-photon
Stimulated emissions in a novel nanoneedle ZnO composite with two complex needle parts were investigated using the two-photon induced time-resolved photoluminescence pumped with the femtosecond pulse at the wavelength of 640 nm in room temperature. Comparing with the results of single-photon pumped
we observe three operation mechanisms of two-photon induced UV emission behaviors with the excitation power increasing:spontaneous emission of free-exciton
exciton-exciton(E-E) scattering and electron-hole-plasma (EHP) recombination. The threshold of two-photon excitation emission is 4.82 GW/cm
2
which is far lower than that of mirconeedle ZnO reported recently and the other nanostructure of ZnO(TW/cm
2
).Our research results proved that the new ZnO nanoneedle structure with UV emission efficiently induced two-photon shows great potential applications in the two-photon induced nanolasers fields.
关键词
Keywords
references
. gür V, Alivov Ya I, Liu C, et al. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys., 2005, 98 (4):041301-1-3.
. Lee C J, Lee T J, Lyu S C, et al. Field emission from well-aligned zinc oxide nanowires grown at low temperature [J]. Appl. Phys. Lett., 2002, 81 (19):3648-3650.
. Emanetoglu N W, Zhu J, Chen Y, et al. Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on γ-plane sapphire [J]. Appl. Phys. Lett., 2004, 85 (17):3702-3704.
. Heo Y W, Tien L C, Kwon Y, et al. Depletion-mode ZnO nanowire field-effect transistor [J]. Appl. Phys. Lett., 2004, 85 (12):2274-2276.
. Qiu Z R, Wong K S, Wu M, et al. Microcavity lasing behavior of oriented hexagonal ZnO nanowhiskers grown by hydrothermal oxidation [J]. Appl. Phys. Lett., 2004, 84 (15):2739-2741.
. Zhang C F, Dong Z W, You G J, et al. Observation of two-photon-induced photoluminescence in ZnO microtubes [J]. Appl. Phys. Lett., 2005, 87 (5):051920-1-3.
. Zhang C F, Dong Z W, You G J, et al. Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires [J]. Appl. Phys. Lett., 2006, 89 (4):042117-1-3.
. Chelnokov E V, Bityurin N, Ozerov I, et al. Two-photon pumped random laser in nanocrystalline ZnO [J]. Appl. Phys. Lett., 2006, 89 (17):171119-1-3.
. Chelnokov E V, Bityurin N M, Marine W. Two-photon pumped zinc oxide random laser [J]. SPIE, 2005, 5975 :59750O-1-9.
. Dong Z W, Zhang C F, You G J, et al. Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal [J]. J. Physics-Condensed Matter, 2007, 19 (21):216202-1-7.
. Dai D C, Xu S J, Shi S L, et al. Observation of both second-harmonic and multiphoton-absorption-induced luminescence in ZnO [J]. IEEE Photonics Technology Lett., 2006, 18 (14):1533-1535.
. Xu P, Wen X, Zheng Z, et al. Two-photon optical characteristics of zinc oxide in bulk, low dimensional and nanoforms [J]. J. Lumin., 2007, 126 (2):641-643.
. Zhu G P, Xu C X, Zhu J, et al. Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle [J]. Appl. Phys. Lett., 2009, 94 (5):051106-1-3.
. Cao H, Wu J Y, Ong H C, et al. Second harmonic generation in laser ablated zinc oxide thin films [J]. Appl. Phys. Lett., 1998, 73 (5):572-574.
. Zhang C F, Dong Z W, You G J, et al. Multiphoton route to ZnO nanowire lasers [J]. Optics Lett., 2006, 31 (22):3345-3347.
. Wang G, Kiehne G T, Wong G K L, et al. Large second harmonic response in ZnO thin films [J]. Appl. Phys. Lett., 2002, 80 (3):401-403.
. Neumann U, Grunwald R, Griebner U, et al. Second-harmonic efficiency of ZnO nanolayers [J]. Appl. Phys. Lett., 2004, 84 (2):170-172.
. Ning C Z. Two-photon lasers based on intersubband transitions in semiconductor quantum wells [J]. Phys. Rev. Lett., 2004, 93 (18):187403-1-4.
. Zhao D, Andreazza C, Andreazza P, et al. Temperature-dependent growth mode and photoluminescence properties of ZnO nanostructures [J]. Chem. Phys. Lett., 2004, 399 (4-6):522-526.
. Lau S P, Yang H Y, Yu S F, et al. Laser action in ZnO nanoneedles selectively grown on silicon and plastic substrates [J]. Appl. Phys. Lett., 2005, 87 (1):013104-1-3.
. Wischmeier L, Voss T, Ruckmann I, et al. Dynamics of surface-excitonic emission in ZnO nanowires [J]. Phys. Rev. B, 2006, 74 (19):195333-1-9.
. Johnson J C, Knutsen K P, Yan H, et al. Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers [J]. Nano Lett., 2004, 4 (2):197-204.
. Kwok W M, Djuriic ' A B, Leung Y H, et al. Study of excitonic emission in highly faceted ZnO rods [J]. Chem. Phys. Lett., 2005, 412 (1-3):141-144.