Operation Mechanism of Exciton Blocking Layer in Organic Photovoltaic Cell
paper|更新时间:2020-08-12
|
Operation Mechanism of Exciton Blocking Layer in Organic Photovoltaic Cell
Chinese Journal of LuminescenceVol. 31, Issue 1, Pages: 141-144(2010)
作者机构:
1. 中国科学院 激发态物理重点实验室 长春光学机密机械与物理研究所, 吉林 长春 130033
2. 中国科学院 研究生院, 北京 100049
作者简介:
基金信息:
DOI:
CLC:O631.2+3
Received:25 October 2009,
Revised:02 January 1900,
Published Online:20 February 2010,
Published:20 February 2010
稿件说明:
移动端阅览
REN Qing-jiang, LI Wen-lian, CHU Bei, et al. Operation Mechanism of Exciton Blocking Layer in Organic Photovoltaic Cell[J]. Chinese journal of luminescence, 2010, 31(1): 141-144.
DOI:
REN Qing-jiang, LI Wen-lian, CHU Bei, et al. Operation Mechanism of Exciton Blocking Layer in Organic Photovoltaic Cell[J]. Chinese journal of luminescence, 2010, 31(1): 141-144.DOI:
Operation Mechanism of Exciton Blocking Layer in Organic Photovoltaic Cell
The operation mechanism of exciton blocking layer (EBL) in organic photovoltaic (PV) cells was demonstrated
the EBL materials with higher electron-transporting ability were used such as bathocuproine (BCP)
bathophenanthroline (Bphen)
and so on. However
it was interestingly found that copper phthalocyanine (CuPc) widely used as donor of the PV cells also can be used as EBL materials and under thicknesses of larger than 10 nm the EBL property even is higher than that of traditional EBL consisting of BCP and Bphen
due to its stronger hole transporting ability from the cathode to the CuPc layer.
关键词
Keywords
references
. Tang C W. Two-layer organic photovoltaic cell [J]. Appl. Phys. Lett., 1986, 48 (2):183-185.
. Xue Jiangeng, Soichi Uchida, Rand Barry P. Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions [J]. Appl. Phys. Lett., 2004, 85 (23):5757-5759.
. Kushto Gary P, Kim Woohong, et al. Flexible organic photovoltaic using conducting polymer electrodes [J]. Appl. Phys. Lett., 2005, 86 (9):093502-1-3.
. Kim J Y, Kim S H, Lee H H, et al. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer [J]. Adv. Mater., 2006, 18 (5):572-576.
. Halls J J M, Pichler K, Friend R H. Exciton diffusion and dissociation in a poly (p-phenylenevinylene)/C60 heterojunction photovoltaic cell [J]. Appl. Phys. Lett., 1996, 68 (22):3120-3122.
. Pettersson L A A, Roman L S, et al. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films [J]. J. Appl. Phys., 1999, 86 (1):487-496.
. Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing [J]. Science, 2007, 317 (5835):222-225.
. Peumans P, Forrest S R. Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells [J]. Appl. Phys. Lett., 2001, 79 (1):126-128.
. Hong Z R, Huang Z H, Zeng X T. Utilization of copper phthalocyanine and bathocuproine as an electron transport layer in photovoltaic cells with copper phthalocyanine/buckminsterfullerene heterojunctions: Thickness effects on photovoltaic performances [J]. Thin Solid Films, 2007, 515 (5):3019-3023.
. Huang Qixiong, Yuan Yongbo, Lian Jiarong, et al. The effects of CuPc thin film deposition rate on organic photovoltaic device performance [J]. Chin. J. Lumin. (发光学报), 2008, 29 (3):433-436 (in Chinese).
. Rand B P, Li J, Xue J, et al. Organic double-heterostructure photovoltaic cells employing thick tris(acetylacetonato)ruthenium(Ⅲ) exciton-blocking layers [J]. Adv. Mater., 2005, 17 (22):2714-2718.
. Hong Z R, Huang Z H, Zeng X T. Investigation into effects of electron transporting materials on organic solar cells with copper phthalocyanine/C60 heterojunctions [J]. Chem. Phys. Lett., 2006, 425 (1-3):62-65.
. Peumans P, Yakimov A, Forrest S R. Small molecular weight organic thin-film photodetectors and solar cells [J]. J. Appl. Phys., 2003, 93 (7):3693-3723.