Improvement of the Structure and Photoelectrical Properties of ZnO Films Based on SiC Buffer Layer Grown on Si(111)
paper|更新时间:2020-08-12
|
Improvement of the Structure and Photoelectrical Properties of ZnO Films Based on SiC Buffer Layer Grown on Si(111)
Chinese Journal of LuminescenceVol. 30, Issue 6, Pages: 807-811(2009)
作者机构:
1. 中国科学技术大学物理系
2. 中国科学技术大学国家同步辐射实验室 合肥,230029
3. 中国科学院 合肥智能机械研究所, 安徽 合肥 230031
作者简介:
基金信息:
DOI:
CLC:O472;O482.31
Received:31 March 2009,
Revised:02 January 1900,
Published Online:30 December 2009,
Published:30 December 2009
稿件说明:
移动端阅览
KANG Chao-yang, ZHAO Chao-yang, LIU Zheng-rong, et al. Improvement of the Structure and Photoelectrical Properties of ZnO Films Based on SiC Buffer Layer Grown on Si(111)[J]. Chinese journal of luminescence, 2009, 30(6): 807-811.
DOI:
KANG Chao-yang, ZHAO Chao-yang, LIU Zheng-rong, et al. Improvement of the Structure and Photoelectrical Properties of ZnO Films Based on SiC Buffer Layer Grown on Si(111)[J]. Chinese journal of luminescence, 2009, 30(6): 807-811.DOI:
Improvement of the Structure and Photoelectrical Properties of ZnO Films Based on SiC Buffer Layer Grown on Si(111)
The films of ZnO/SiC/Si and ZnO/Si were grown by pulsed-laser-deposition (PLD) technique and were processed to fabricate ultraviolet (UV) detectors. The effects of SiC buffer layer on the structure and photoelectrical properties of ZnO films grown on Si (111) substrates were investigated by the X-ray diffraction (XRD)
photoluminescence (PL)
current-voltage (
I-V
) and photoelectrical response measurements. The results showed that the SiC buffer layer can effectively improve the crystalline qualities
optical and photoelectrical properties of the ZnO thin film grown on Si substrate. It is obvious that
as a compliant substrate
SiC buffer layer makes the interface defects and interface state density reduce because the partial stress induced by large crystal lattice mismatch and thermal mismatch between ZnO and SiC can be relaxed.
关键词
Keywords
references
. Service R F. Will UV lasers beat the blues [J]. Science, 1997, 276 (5314):895-897.
. Bian J M, Li X M, Zhang C Y, et al. Synthesis and characterization of two-layer-structured ZnO p-n homojunctions by ultrasonic spray pyrolysis [J]. Appl. Phys. Lett., 2004, 84 (4):541-543.
. Bian J M, Li X M, Zhang C Y, et al. p-type ZnO films by monodoping of nitrogen and ZnO-based p-n homojunctions [J]. Appl. Phys. Lett., 2004, 85 (18):4070-4072.
. Zhang Liting, Wei Ling, Zhang Yang, et al. Micrastructures and photoluminescence properties of ZnO : V thin films and effects of post-annealing [J]. Chin. J. Lumin. (发光学报), 2007, 28 (4):561-565 (in Chinese).
. Li Aixia, Bi Hong, Liu Yanmei, et al. Structure and optical properties of (Co,Cu)-codoped ZnO thin films [J]. Chin. J. Lumin. (发光学报), 2008, 29 (2):289-293 (in Chinese).
. Sun Jian, Bai Yizhen, Gu Jianfeng, et al. The growth and optical properties of ZnO films deposited on freestanding thick diamond films [J]. Chin. J. Lumin. (发光学报), 2008, 29 (3):455-459 (in Chinese).
. Lin B X, Fu Z X, Jia Y B, et al. Green luminescent center in undoped zinc oxide films deposited on silicon substrates [J]. Appl. Phys. Lett., 2001, 79 (7):943-945.
. Wang Xianghu, Yao Bin, Shen Dezhen, et al. Electrical and optical characteristics of Li-doped ZnO [J]. Chin. J. Lumin.(发光学报), 2006, 27 (6):945-948 (in Chinese).
. Yoo Y Z, Sekiguchi T, Chikyow T, et al. V defects of ZnO thin films grown on Si as an ultraviolet optical path [J]. Appl. Phys. Lett., 2004, 84 (4):502-504.
. Zhang Y, Lin B X, Sun X K, et al. Temperature-dependent photoluminescence of nanocrystalline ZnO thin films grown on Si (100) substrates by sol-gel process [J]. Appl. Phys. Lett., 2005, 86 (13):131910-1-3.
. Namavar F, Colter P C, Planes N, et al. Investigation of porous silicon as a new compliant substrate for 3C-SiC deposition [J]. Materials Science and Engineering B, 1999, 61-62 :571-575.
. Kipshidze G, Nikishin S, Kuryatkov V, et al. High quality AlN and GaN grown on compliant Si/SiC substrates by gas source molecular beam epitaxy [J]. J. Electron. Mater., 2001, 30 (7):825-828.
. Tang Z K, Wong G K, Yu P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films [J]. Appl. Phys. Lett., 1998, 72 (25):3270-3272.
. Kim S S, Lee B T. Effects of oxygen pressure on the growth of pulsed laser deposited ZnO thin films on Si (001) [J]. Thin Solid Films, 2004, 446 (2):307-312.
. Egelhaaf H J, Oelkrug D. Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO [J]. J. Cryst. Growth, 1996, 161 (1-4):190-194.
. Vanheusden K, Seager C H, Warren W L, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors [J]. Appl. Phys. Lett., 1996, 68 (3):403-405.
. Zhang D H, Xue Z Y, Wang Q P, et al. Violet and blue photoluminescence emitted from ZnO films deposited by rf magnetron sputtering [J]. SPIE, 2002, 4918 :425-428.
. Liu M, Kitai A H, Mascher P. Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese [J]. J. Lumin., 1992, 54 (1):35-42.
. Sze S M. Physics of Semiconductor Devices [M]. New York: Wiley, 1983, 178.
. Liu C H, Liu B C, Ma Z Y, et al. The contact and temperature characteristics of ZnO/P-Si [J]. J. Functional Materials and Devices (功能材料与器件学报), 2006, 6 (37):857-860 (in Chinese).
. Liu E K, Zhu B S, Luo J S, et al. Semiconductor Physics [M]. Beijing: National Defense Industry Press, 1997, 228 (in Chinese).
. Yan F, Xin X B, Aslam S, et al. 4H-SiC UV photodetectors with large area and very high specific detectivity [J]. J. Quant. Electr., 2004, 40 (9):1315-1320.
. Chen X P, Zhu H L, Cai J F, et al. High-performance 4H-SiC-based ultraviolet p-i-n photodetector [J]. J. Appl. Phys., 2007, 102 (2):024505-1-4.
. Brown D M, Downey E T, Ghezzo M, et al. Silicon carbide UV photodiodes [J]. IEEE Transactions on Electron Devices, 1999, 40 :325-333.
. Xiu F X, Yang Z, Mandalapu L J, et al. p-type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy [J]. Appl. Phys. Lett., 2006, 88 (5):052106-1-3.