A Facile Solution Synthesis Route of ZnO Nanorods and Its Optical Properties
paper|更新时间:2020-08-12
|
A Facile Solution Synthesis Route of ZnO Nanorods and Its Optical Properties
Chinese Journal of LuminescenceVol. 30, Issue 4, Pages: 495-498(2009)
作者机构:
1. 华北电力大学 北京市高电压与电磁兼容重点实验室 北京,102206
2. 华北电力大学 电站设备状态监测与控制教育部重点实验室, 北京 102206
3. 北京航空航天大学 化学与环境学院 北京,100083
作者简介:
基金信息:
DOI:
CLC:O482.31
Received:25 January 2009,
Revised:02 January 1900,
Published Online:30 August 2009,
Published:30 August 2009
稿件说明:
移动端阅览
LU Yu-zhen, GUO Lin, LI Cheng-rong, et al. A Facile Solution Synthesis Route of ZnO Nanorods and Its Optical Properties[J]. Chinese journal of luminescence, 2009, 30(4): 495-498.
DOI:
LU Yu-zhen, GUO Lin, LI Cheng-rong, et al. A Facile Solution Synthesis Route of ZnO Nanorods and Its Optical Properties[J]. Chinese journal of luminescence, 2009, 30(4): 495-498.DOI:
A Facile Solution Synthesis Route of ZnO Nanorods and Its Optical Properties
Well-crystalline ZnO nanorods were synthesized by employing zinc acetate dihydrate and hydrazine hydrate as reactants without using any surfactant. The phase structure
morphology and optical properties of the product were characterized by X-ray diffraction (XRD)
scanning electron microscope (SEM)
high-resolution transmission electron microscope (HRTEM) and room-temperature photoluminescence (PL) spectrum. The results demonstrated that the well-dispersed wurtzite ZnO nanorods have an average diameter of 120 nm. The ZnO nanorods prepared by this simple solution method have a strong emission peak at 386 nm with a full-width at half maximum of 18 nm
and a wide emission band in the visible range. Without using any surfactant
microreactors for the nucleation and growth of ZnO nanorods were supplied by adjusting the ratio of the mixed solvents.
关键词
Keywords
references
. Look D C. Recent advances in ZnO materials and devices [J]. Materials Science and Engineering: B, 2001, 80 (1-3):383-387.
. Li Xiangping, Zhang Baolin, Dong Xin, et al. Study on the properties of ZnO films prepared by photo-assisted MOCVD [J]. Chin. J. Lumin. (发光学报), 2008, 29 (1):139-143 (in Chinese).
. Li Aixia, Bi Hong, Liu Yanmei, et al. Structure and optical properties of (Co,Cu)-codoped ZnO thin films [J]. Chin. J. Lumin. (发光学报), 2008, 29 (2):289-293 (in Chinese).
. Wang Jingwei, Bian Jiming, Liang Hongwei, et al. The effect of Ag-doping on the optical and electric properties of ZnO films [J]. Chin. J. Lumin. (发光学报), 2008, 29 (3):460-464 (in Chinese).
. Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292 (5523):1897-1899.
. Fang G J, Wang M J, Liu N S, et al. Vertically aligned and patterned growth, photoluminescence and field electron emission properties of ZnO nanowires [J]. Chin. J. Lumin. (发光学报), 2008, 29 (3):421-424 (in Chinese).
. Wang X D, Gao P X, Li J, et al. Rectangular porous ZnO-ZnS nanocables and ZnS nanotubes [J]. Adv. Mater., 2002, 14 (23):1732-1735.
. Chen J G, Guo C X, Zhang L L, et al. Crystal growth and luminescent properties of ZnO sub-microrods prepared by one step solution growth method [J]. Chin. J. Lumin. (发光学报), 2006, 27 (1):59-65 (in Chinese).
. Guo L, Ji Y L, Xu H B, et al. Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure [J]. J. Am. Chem. Soc., 2002, 124 (50):14864-14865.
. Lu Y Z, Guo L, Xu H B, et al. Low temperature synthesis and optical properties of small-diameter ZnO nanorods [J]. J. Appl. Phys., 2006, 99 (11):114302-1-4.
. Zhang H, Yang D R, Ji Y J, et al. Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process [J]. J. Phys. Chem. B, 2004, 108 (13):3955-3958.
. Zhang J, Sun L D, Yin J L, et al. Control of ZnO morphology via a simple solution route [J]. Chem. Mater., 2002, 14 (10):4172-4177.
. Kresse G, Dulub O, Diebold U. Completing stabilization mechanism of the polar ZnO (0001)-Zn surface [J]. Phys. Rev. B, 2003, 68 (24):245409-1-15.
. Li W J, Shi W E, Zhong W Z, et al. Growth mechanism and growth habit of oxide crystals [J]. J. Crystal Growth, 1999, 203 (1-2):186-196.
. Dijken A V, Meulenkamp E A, Vanmaekelbergh D, et al. The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission [J]. J. Lumin., 2000, 87-89 :454-456.
. Zhang Lide, Mu Jimei. Nanomaterials and Nanostructure [M]. Beijing: Science Press, 2001, 1-115.
. Berkowtz A E, Mitchell J R, Carey M J, et al. Giant magnetoresistance in heterogeneous Cu-Co alloys [J]. Phys. Rev. Lett., 1992, 68 (25):3745-3748.